
Speedup Factor Estimation through Dy-
namic Behavior Analysis for FPGA 

Zhongda Yuan1, Jinian Bian1, Qiang Wu2, Oskar Mencer2 
 

1 Dept. of Computer Science and Technology, Tsinghua Univ., Beijing 100084, China 
2 Department of Computing, Imperial College London, SW7 2BZ, UK 

yzd06@mails.thu.edu.cn, bianjn@tsinghua.edu.cn  
{qiang.wu, o.mencer}@imperial.ac.uk,  

 

Abstract 

In reconfigurable platform, before con-
vert and download program into real 
hardware, reliable estimation of speedup 
factor is of great importance for task 
schedulers. In this paper, a novel tech-
nique for speedup factor estimation is 
proposed. From the event patterns col-
lected by hardware counters built in mod-
ern processors, a formula is given to es-
timate speedup factor of target process. 
Experiments on programs from 
SPEC2006 show that the speedup feature 
is able to be estimated at an acceptable 
cost. 

Keywords: performance event counter, 
speedup estimation 

1. Introduction 

With the progress in Reconfigurable 
Computing technology, CPU+FPGA hy-
brid platforms become increasingly popu-
lar in both academic and industry world. 
Various architectures, algorithms and 
tools are proposed to accelerate software 
programs with FPGA accelerators [1]. Dif-
ferent speedup factors are reported, rang-
ing from tens to hundreds, according to 
the application and program being trans-
formed and the hardware platform they 
used. 

It is widely accepted that transforming 
existing program into FPGA hardware 
code is time consuming. Before convert 
and download program into real hardware, 
reliable estimation of speedup factor will 
save much work by eliminating unattrac-
tive ones.  

Speedup factor is defined as the execu-
tion time ratio between modified hybrid-
platform and traditional Von’s platform. 
Published researches [2-3] focus on after-
ward speed-up factor report. Little has 
been reported about speed-up factor esti-
mation before implementing a hardware 
version of targeted algorithm.  

Event counter is nearly a standard fea-
ture for modern processors and exist on 
most major processors today, such as In-
tel Pentium, Core, IA-64 [4] and AMD 
Opteron [5]. Different kinds of events can 
be recorded by event counters while 
processors are executing programs, in-
cluding the clock cycles elapsed, instruc-
tions ever executed, cache misses, branch 
prediction failures, and so on[3]. 

Previous researches using event count-
ers mainly focus on gathering perform-
ance statistics to evaluate the underlying 
hardware architectures or help program-
mers in code optimization and system 
management [6-9], leaving speed-up factor 
estimation as a blank section. 

In this paper, a technique using event 
counters built in modern processors to 
estimate speedup factor is proposed. Per-

Proceedings of the 11th Joint Conference on Information Sciences (2008) 
                                          Published by Atlantis Press 
                                                    © the authors 
                                                                1



formance event information of the pro-
gram is collected at run time. By process-
ing the records of the events, metrics of 
the event series are calculated and com-
pared with the reference values to sort out 
the features of the monitored process.  

The rest of the paper is organized as 
follows: Section 2 discusses the related 
work about determining speedup factor 
and the technique and applications about 
build-in event counters in modern CPUs. 
Section 3 gives a detailed design on 
speedup factors estimation by collecting 
event patterns online. Section 4 intro-
duces the experiment including the test 
platform, performance counter tools, test 
programs and the results. Discussion and 
conclusion are given in section 5 with 
some hints to future work. 

2. Speedup factor 

Though there are number of reports about 
successful accelerating hardware / soft-
ware co-designs [1][3], few have explored 
the potential about a hybrid-platform be-
fore implementing certain algorithm in 
hardware [2]. This vacuum may be ex-
plained by the following two reasons. 

The main reason is wide variety of hy-
brid platforms and target program. Since 
reconfigurable computing is an emerging 
technique, it has a long way to become 
standardized. Nearly each team interested 
in this realm, has their own hardware lay-
out, from integrating FPGA cells into 
general purpose CPU, to attach a FPGA 
card to the slow ISA slot. Parameters of 
reconfigurable resource is much more 
varied, including number of RCUs (Re-
configurable Units), build-in memory ca-
pacity and the data width of IO channel. 
The algorithm under scrutiny focuses on 
multimedia compression / decompression, 
data encryption / decryption, biology and 
wireless application. These application 
share one common characteristic – data 

flow is much heavier than instruction 
flow. 

It is very common for published online 
scheduling research to assume that the 
conversion from software algorithm to 
hardware specification is finished before-
hand. Some even assume the execution 
time can be deduced at the time when a 
hardware task is arriving. This assump-
tion is acceptable as long as experimental 
platform is designed for special usage, 
such as data compression and or encryp-
tion [2]. But for a general purpose hybrid-
platform system, online converting and 
scheduling shall consider the conversion 
cost and the performance gain before take 
any substantial action. In a performance-
critical system, online services cannot be 
stopped. The kernel loop must be identi-
fied, located, converted and finally de-
ployed into FPGA-based co-processing 
components. In this environment, manag-
ing module will be able to pick the most 
promising one, so as to improve the over-
all performance, when the beneficial-cost 
rate of a certain task can be estimated 
with enough accuracy. 

3. Speedup factor estimation 

3.1. Hardware and software Support 

We setup the experimental a system with 
Pentium 4 processor (family 15, model 2, 
stepping 4) running Fedora Core 5 Linux. 
The processor has a working frequency of 
1.8 GHz, 512KB L1 cache. It contains 18 
available performance data registers, 65 
performance control registers, supporting 
46 types of events to be counted.  

The kernel of the Linux is of version 
2.6.22.9 downloaded from kernel.org [10] 
and patched with perfmon performance 
counter driver [11]. On this platform, a 
background daemon is designed to collect 
events from certain running process. Per-
formance events, such as CPU cycles, in-
structions completed and memory access 

Proceedings of the 11th Joint Conference on Information Sciences (2008) 
                                          Published by Atlantis Press 
                                                    © the authors 
                                                                2



can be simultaneously stored in hardware 
registers while the CPU processing its 
instruction flows. The monitoring dae-
mon only need to periodically checkout 
the value and reset the counter. The 
monitoring and logging overhead is lim-
ited. 
 
3.2. Dynamic behavior observation 

Cycles spent on traditional general CPUs 
includes instruction code memory access, 
memory access on data, and algorithm on 
data processing. Time needed for a task 
run in FPGA hardware consists of hard-
ware setting up, data transfer, and calcu-
lation on FPGA. Statistics show that data 
transfer codes have taken up to 80% [3]. 
When a program was translated into 
hardwire circuit on a FPGA chip, the per-
formance gain comes from the following 
reasons. 

Calculation steps on traditional CPU 
are integrated into one single step in 
FPGA. Temporary variables that cannot 
be handled by registers with in CPU core, 
can be handled by hardwire within FPGA, 
for its unlimited register number. When 
the hardware resource to implement algo-
rithm is enough, less IPC, may yields 
more speedup factor. 

Data transfers are handled in a pipeline 
mode in traditional CPU. FPGA hardware 
often suffers from slower interface to 
memory. So, those algorithms with heavy 
data transfer will gain less than those 
without too much data access. 

A sample program have three types of 
kernel loop, namely non dependant loop, 
carry dependant loop and a mixed loop, 
which loop through an array randomly. 

 

Fig. 1: classification in MPI-IPC space 
 

In Figure 1, the blurred dots are actu-
ally clusters of samples, which are col-
lected periodically through the build-in 
hardware-based Performance Counters. It 
can be observed that non-dependant loop, 
represented by the lower cluster of sam-
pled points, enjoys better performance, or 
instructions completed per CPU clock, 
because current CPU pipelining tech-
nique suite the kind of task better. Carry 
dependant loop suffers from the worst 
performance because the pipeline is more 
frequently stalled for it have to wait for 
the output of former iteration to start a 
new one. In the clock to memory view, 
carry dependant loop have lest memory 
access because its iteration need only a 
small area to store the variables and thus 
encountered much less memory access. 
The non-dependant loop, simply iterate 
through a big array, have more memory 
access than dependant loop. At the same 
time, sequential access enabled the proc-
essor to handle cache more efficiently 
than the random version, the mixed loop, 
which fires event more memory access 
than non-dependant loop. 

 
3.3. Speedup factor estimation 

Based on these observations, we give 
the following formula to estimate the 
speedup factor of a target program. 

 )log(** MPIBIPCACF  (1) 
In the formula above, F is the friendly 

level. Friendly Level can be defined as 

Proceedings of the 11th Joint Conference on Information Sciences (2008) 
                                          Published by Atlantis Press 
                                                    © the authors 
                                                                3



the expectable speedup factor. A, B make 
up a gradient in IPC-MPI space, and C set 
up a reference line. These parameters are 
simply estimated by experiments and may 
vary a little, since different hardware con-
figurations may yield different speedup 
result. 

4. Experiment 

4.1. Test on programs from CPU 
SPEC 2006 benchmarks 

Testing is carried on CPU SPEC 2006 
benchmark programs [12] to further verify 
our estimation, and the results go promis-
ing as Table 1 show the event matrix 
from spec benchmarks. Estimation here is 
calculated with parameter set as A = 9, 

B=1 and C = 1, which is an empirical 
value set. 

From the results in Table 1, we can 
safely point out that, kernel loops within 
programs like astar and bzip have com-
plex dependent map, not very suitable for 
existing pipelines and FPGA accelerators; 
while kernel loops within programs like 
bwaves are loop carry dependent, in 
which most computations are restrained 
in local variables, and are suitable for 
FPGA accelerators.  

It can be seen that from the experimen-
tal data collected by performance count-
ers, the character of the target program 
deduced is consistent to statistical ana-
lyzes. The potential to accelerate can be 
estimated. 

 
 

Table 1.  Testing results from CPU SPEC 2006 
 

benchmark Samples IPC MPC MPI 
Speedup 
Estimation 

Astar 860 0.69129 0.12596 0.71874 -4.8914 
Bwaves 10462 0.37421 0.016608 0.05784 0.4822 
bzip2 624 0.37983 0.26177 0.91946 -2.3345 
cactusADM 2560 0.4148 0.058203 0.14076 -0.7725 
Calculix 4280 0.70606 0.0060611 0.0070686 -0.4024 
Gromacs 1636 0.48332 0.0071375 0.014758 0.8661 
H264ref 1304 0.75604 0.048401 0.066257 -3.0901 
Lbm 1711 0.2866 0.79047 2.7618 -2.5953 
leslie3d 1780 0.47402 0.077958 0.16446 -1.4611 
Libquantum 1906 0.81747 0.011527 0.015657 -2.2004 
Mcf 9268 0.1857 0.017861 0.090857 1.7272 
Milc 2574 0.25213 0.01202 0.077876 1.2835 
Sphinx 1796 0.61894 0.022065 0.035858 -1.2423 
Wrf 2307 0.63282 0.048812 0.09304 -2.3207 
Xalan 1397 0.34754 0.0077023 0.025589 1.5377 
Zeusmp 14794 0.31672 0.030507 0.095731 0.4957 

 

5. Discussion and conclusion 

To estimate the speedup factor of running 
task on running system, we use perform-
ance events data collected by PMU to 

pinpoint the most used codes, to deter-
mine the feature of that sequence of codes, 
and to estimate the potential of target 
process to be accelerated by means of bi-
nary modification. Experiments show that 
the speedup feature can be estimated with 
the performance event counters at an ac-

Proceedings of the 11th Joint Conference on Information Sciences (2008) 
                                          Published by Atlantis Press 
                                                    © the authors 
                                                                4



ceptable cost. From our experiment, the 
conclusion can be drawn that from per-
formance pattern observed on a process, 
its feature can be safely estimated. 

More experiment on various type pro-
grams can make this conclusion more 
convincing and concrete. Currently we 
use overall dynamic behavior as the esti-
mation base, but actually program have 
phases, i.e. stages that focus on deferent 
operations. Dynamic behavior analysis 
can be implemented so as to make more 
accurate estimation on phrases. Detailed 
restrains, such as hardware capacity for 
algorithm, memory interface bottleneck, 
are simply assumed to be irrelevant in 
this paper. Further research effort can fo-
cus on these limits and yield a more con-
crete conclusion. 

This work is supported by NSFC No. 
90607001 and the EPSRC EP/C544706/1, 
EP/C544692/1. 

References 

[1] Tim J. Todman, A George. Constantinides, 
Steve J.E. Wilton, Oskar Mencer, Wayne 
Luk, Peter Y.K. Cheung.: Reconfigurable 
Computing: Architectures and Design 
Methods. IEE Proceedings on Computers 
and Digital Techniques. 152(2), 193--207 
(2005) 

[2] Zhi Guo, et al., A Quantitative Analysis 
of the Speedup Factors of FPGAs over 
Processors. In FPGS ’04, February 22-24, 

2004, Monterey, California, USA. 162—
170(2004) 

[3] Osman Devrim Fidanci, et al., Perform-
ance and Overhead in a Hybrid Recon-
figurable Computer, Proceedings of 
IPDPS’03. 

[4] Intel Corporation. http://www.intel.com/ 
[5] Advanced Micro Devices, Inc. 

http://www.amd.com/ 
[6] M.J. Serrano, Youfeng Wu: Memory per-

formance analysis of SPEC2000C for the 
Intel(R) Itanium processor. In: Proc. of 
Intl. Workshop on Workload Characteri-
zation, pp. 184--192 (2001) 

[7] Bill Maron, Thomas Chen, Duc Vianney, 
et al.: Workload Characterization for the 
Design of Future Servers. In: Proc. of Intl. 
Workshop on Workload Characterization, 
pp. 129--136 (2005) 

[8] J.M. Anderson, L.M. Berc, J. Dean, et al.: 
Continuous Profiling: Where Have All the 
Cycles Gone? ACM Transactions on 
Computer Systems, 15(4), 357--390 (1997) 

[9] E. Duesterwald, C. Cascaval, Sandhya 
Dwarkadas.: Characterizing and Predict-
ing Program Behavior and its Variability. 
In: Proc. of the International Conference 
on Parallel Architectures and Compilation 
Techniques, pp. 220--231 (2003) 

[10] The Linux Kernel Archives. 
http://kernel.org/ 

[11] HP Labs. Perfmon project. 
http://www.hpl.hp.com/research/linux/per
fmon/ 

[12] Standard Performance Evaluation 
Corporation  http://www.SPEC.org 

 

 

Proceedings of the 11th Joint Conference on Information Sciences (2008) 
                                          Published by Atlantis Press 
                                                    © the authors 
                                                                5




