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Abstract. This paper explores the potential of smart enumeration: enu-
meration of a design space giving the effect of exhaustive search, while
using heuristics to order and reduce the search space. We characterise
smart enumeration as having several key properties, including carefully
chosen problem domains and techniques to speed up the search, such as
those that exploit symmetry. Our approach has been applied to technol-
ogy mapping, optimising area and power consumption.

1 Introduction

Many application domains in computer science contain problems which are es-
sentially searches across very large spaces. These searches often take time ex-
ponentially proportional to the problem size, so work has concentrated on ap-
proximate algorithms which give a good-enough result in reasonable time. This
result may be good enough in practice, but it is unlikely to be optimal: only
enumeration can give the absolute optimum solution. In this paper we develop
smart enumeration: giving the effect of enumeration whilst reducing the cost.

We define smart enumeration as enumeration using heuristics to give same
effect as exhaustive search with reduced effort. Smart enumeration gives the ben-
efits of enumeration (we can be certain the solution is optimal) while mitigating
its drawbacks (time and resources needed). The key is to choose problem do-
main carefully and apply heuristics to order and reduce the search space without
throwing away any potential solutions.

As a case study for our smart enumeration approach, we address the problem
of identifying minimal circuits for a function by improving the upper and lower
bounds of resources it can use. We find the lower bound using global generation:
in principle, generating every possible configuration of a device. In pratice, we
use local symmetries to give the effect of exhaustive generation at reduced cost,
using Field-Programmable Gate Array devices (FPGAs) for high-speed emula-
tion of configurations and connections of look-up tables (LUTs). By searching
the space of LUT configurations and interconnections directly, we combine logic
minimisation and technology mapping from Boolean functions to LUTs. We
find the upper bound using logic decomposition, applying local generation on



the components of the decomposition. If we are lucky, global generation uncovers
the minimum possible implementation. Otherwise, we get an improved measure
of the bounds within which the optimal design must lie, as well as a locally
optimized implementation. We also show how the search space can be reordered
to optimise for low power.

Our main contributions in this paper are to:

– Identify key properties of smart enumeration and apply them to technology
mapping (section 3)

– Improve the measure of the bounds for optimal solutions (section 3.1)
– Build a framework for circuit generation combining logic minimization and

technology mapping (section 3.2)
– Use logic decomposition to guide search, pruning the search space and giving

the upper bound (section 3.3)
– Reorder the search to optimise for low power (section 3.4)

In the rest of this section, we enumerate key properties of smart emnumer-
ation and provide an overview of the paper. Several key properties of smart
emnumeration can be identified as follows:

1. Restrict to narrow problem domain
2. Preprocess: eliminate hopeless cases
3. Order search space: order by cost metric, then by enumeration effort
4. Canonical forms: search classes of possible solutions, not the solutions
5. Symmetry: relate to other parts of search, save common results
6. Filtering: early elimination of some cases as preprocessing step
7. Early exit: abandon current leaf at earliest opportunity
8. Massive parallelism: use grid computing and custom hardware to exploit

parallelism between unrelated searches

Each property is a different way of ordering or reducing the huge search space
to be enumerated. We apply each property to the technology mapping problem.

The rest of this paper is structured as follows: Section 2 shows related work
Section 3.1 shows our circuit generation framework combining logic minimization
and technology mapping. Section 3.2 shows parallel hardware for generating
circuits on FPGAs. Section 3.3 uses logic decomposition to guide and speed up
the search, finding the upper bound. Section 3.4 shows how the search space
can be reordered to optimise for low power. Section 4 gives results and evaluates
the use of logic decomposition in our framework for logic minimization and
technology mapping. Finally, Section 5 concludes and suggests future work.

2 Related work

Early works on area minimization decompose the circuit into a set of trees, and
apply technology mapping on tree structures [1, 2]. Cong et al. concentrate on
enumeration of single output, K-input connected subgraphs (fanout-free cones)



within the circuit, and prove that the problem can still be optimally solved by
decomposing the circuit into maximal fanout-free cones (MFFC), and enumerat-
ing separately on each MFFC [3]. The proposed algorithm restricts the solution
to duplication-free mappings where each circuit gate must be mapped to ex-
actly one LUT. Later work by Cong et al. [4] introduces heuristics to reduce the
runtime, and extends the approach to duplicable mappings.

More recently, Ling et al [5] reformulated the technology mapping problem
as a Boolean satisfiability (SAT) problem, showing that state-of-the-art FPGA
technology mapping algorithms miss optimal solutions. They also created an al-
gorithm solving the optimal area mapping problem. Safarpour et al. [8] decom-
pose the resulting SAT problem into two easier problems to increase efficiency.
Cong et al. [9] derive their SAT formulation from the implicant rather than the
minterm representation of the problem, creating a smaller problem which can
be solved faster and cover more target problems.

Two recent efforts using enumeration concern an implicit technique for enu-
merating structural choices in circuit optimization based on rewiring and re-
substitution [6], and the adoption of reverse search in enumerative optimization
for obtaining, for instance, the k shortest Euclidean spanning trees [7]. Our re-
search complements this work, since we exploit circuit parallelism to speed up
generation.

3 Case study: technology mapping

This section shows how we apply our definition of smart enumeration to the
problem of technology mapping: mapping from device-independent primitives to
device-specific primitives. We apply the properties as follows:

1. Restrict to single-output combinatorial circuits implemented as DAGs of
LUTs, in form of truth tables

2. Preprocess: eliminate all disconnected graphs, feedback, redundant inputs,
redundant LUTs

3. Order search space: order by optimisation metric (latency / area), then by
enumeration effort. Start with potentially most optimal solution, then iterate
from easiest to hardest

4. Canonical forms: enumerate NPN-equivalence classes rather than all the pos-
sible functions

5. Symmetry: one configuration with one input corresponds to many combina-
tions of inputs and configurations

6. Filtering: for each graph, for each combination, filter configurations passing
N inputs, where N < the total number of inputs

7. Early exit: enumerate each combination until first failing input
8. Massive parallelism: parallelise over configuration space, run hundreds of

subsearches in parallel over grid. Map to custom hardware exploiting low-
level FPGA resources (ROMs, multipliers) to factor out common and con-
stant parts of designs. Generate specific hardware optimised for each search.
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Fig. 1. Improving bounds by generation and decomposition: (a) Process input (logic
function) and outputs (upper and lower bounds). (b) Starting with the initial maxi-
mum max and minimum min number of LUTs, global circuit generation increases the
lower bound, while decomposition and local generation reduce the upper. Generation
is parallelizable, so multiple FPGAs can be used for generation, allowing a higher lower
bound by generating more circuits in a reasonable time. Ultimately we find either the
absolute minimum circuit by global generation, or new, tighter bounds within which it
must lie.

Step 1
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Step 2a (optimise for Latency)

Find shapes for each latency, 

sort by latency, then by 
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Step 2b (optimise for Area)
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Step 3

(A) Generate each connection for each shape

(B) Generate each graph for each connection

Step 4

For each graph, for all inputs, generate all LUT configurations

Input: function Y to be optimised, 

goal (latency or area)

Output: circuit graph of optimised design

Fig. 2. Circuit generation. Step 2 differs for area (step 2a) and latency (step 2b). Step
4 can run in software or parallel hardware (section 3.2).

3.1 Approach

This section shows our circuit generation framework’s four-step approach, which
involves developing expressions for the upper and lower bound sizes of map-
pings from function to graph of LUTs. Our approach improves the initial lower
and upper bounds of the number of LUTs required to implement a given logic
function (fig. 1), using circuit generation and logic decomposition: global circuit



generation, on the entire design, improves the minimum; local generation, on the
parts of the decomposed design, improves the maximum.

We break generation into four steps (fig. 2). We implement step 4 in parallel
hardware on FPGAs, relying on two key FPGA properties: (a) LUTs: high-
speed table look-up. (b) Massive parallelism: many instances in parallel. For
pratcitcality, we limit ourselves to single output functions.

Fig. 2 shows how we break the problem into four steps: Step 1: given an
N-bit input, 1-bit output boolean input function Y and an optimization mode
(area or latency), identify observable inputs and limit the search space. Step 2:
generate all circuit shapes (vectors of the numbers of LUTs in each layer) within
the search space from step 1; sort by (a) latency or (b) area. Step 3: generate
all possible interconnections for each shape, Step 4: generate all possible LUT
configurations for each circuit graph. We generate graphs of 4-input LUTs, with
H layers of LUTs, where layer h has Lh LUTs; Ltot LUTs in total.

Logic functions with more than four inputs require multiple LUTs. We further
refine the four steps (fig. 2) for N -input logic functions.

Step 1. Count observable inputs, index into table 1 to find the area or latency
bounds. We define latency as the maximal depth in LUTs from design inputs to
design output, and area as the total number of LUTs. We calculate the initial
upper bound by observing that an n+1-input design can be implemented using
two n-input LUTs multipexed by the n + 1th input using one more LUT.

Three rules facilitate calculation of minumum area and latency required:
(1) each observable design input must connect to at least one LUT input, (2) at
least one of the LUT inputs must connect to a LUT output at a previous layer,
(3) there is a single LUT at the highest layer. These rules ensure that (1) no
input is redundant, (2) no LUT is disconnected (redundant) and (3) there is
only one design output.

Step 2. Find all shapes for the bounds from step 1 (table 2). Sort the re-
sulting list of shapes by latency (if optimizing for latency, step 2a) or area (if
optimizing for area, step 2b). Within the sorted list, sort equal-area (step 2a)
or equal-latency (step 2b) shapes by generation effort: order by size of search
space in steps 3 and 4. For example, for an 7-input design for minimum area, first
choose the smallest shape that will accept seven inputs: (1,1) in our terminology.
If this fails, choose the next smallest shape: (2,1). Similarly, find the minimum la-
tency design by iterating from the minimum latency topology to the maximum.
We observe that the number of shapes for a given number of LUTs Ltot and
layers H is bounded by the binomial coefficient

(

Ltot

H

)

. Thus the total number of
shapes is bounded by 2Ltot [10], and the total number of shapes for the bounds

of areas from step 1 is bounded by:
∑2N−3−1

⌊(N+1)/3⌋ 2Ltot = 22N−3

− 2⌊(N+1)/3⌋

Step 3. Generate all interconnections. Step 3(A): produce a set of connec-

tions for each shape: topologically distinct trees where the output of each LUT
in a layer must connect to the input of a LUT in the next layer. Step 3(B):
generate directed acyclic graphs for each connection: all combinations of con-
nections from each LUT input unconnected in step 3(A) to each LUT output



Table 1. Step 1: Theoretical upper and lower bounds for latency (maximal depth of
LUTs from inputs to output) and area (number of LUTs) for various numbers of inputs.

function optimize for latency optimize for area
#inputs min max min max

≤ 4 1 1 1 1
5 2 2 2 3
N log4(N) (N − 3) ⌊(N + 1)/3⌋ 2N−3 − 1

O(logN) O(N) O(N) O(2N )

Table 2. Step 2: All the different shapes for one to three 4-LUTs.

Latency
1 2 3 4

Area 1 (1)
2 (1,1)
3 (2,1) (1,1,1)

in previous layers, and the design inputs. For a LUT at layer h, the number of
possible interconnections is: Lh−1 ∗ (N +

∑h−1
0 Li)

3.
Step 4. For all graphs, generate each configuration of each LUT, for each

input. The output of the final circuit must match Y for each input over the input
space of 2N . We use parallel hardware to speed up this step (next section).

3.2 Generation Circuit Generation

This section shows our designs for implementing step 4 (fig. 2) by parallel gen-
eration on reconfigurable hardware.

We build FPGA circuits using ASC, A Stream Compiler [11]; this means we
can write low-level optimizations and high-level structure all within the same
C++ description. We build one ASC design per shape:

Step 4. Generate an ASC circuit for each graph output from step 3(B). In-
stantiate the target hardware, datapath containing LUT emulators and compara-
tors, and a finite state machine to loop through each input until the first failing
one, for each configuration, stopping at the first configuration that matches the
target Y output for each input. We emulate LUTs, rather than use FPGA LUTs
directly, to avoid reconfiguring the design for each set of LUT configurations.

Fig. 3 shows the datapath our parallel generation hardware, which we use
for both depth-first and breadth-first approaches. The difference is in the state
machine driving the datapath: depth-first tries each input until the first failing
one; breadth-first tries only a small set of inputs. Here failing means the output
of LUT0 does not match the the target (output of Y).
Mapping to Xilinx LUTs. Part of the above design can map explicitly to
Xilinx Virtex II CLB resources – similar techniques can apply to other FPGA
families. Our hardware design has two properties: (a) for p LUTs emulated in
parallel, each parallel configuration for LUT 0 lies in the same arithmetic se-



Target 

Hardware

0

LUT 1,

Config1

LUT 0,

config0

+0

LUT 0,

config0

+p-1

=

=

Target 

Hardware

1

LUT 1,

config1

LUT 0,

config0

+0

LUT 0,

config0

+p-1

=

=

Input

vector 0

Input

vector 1

p

p

p

4

4

N

N

target 1

target 0

Fig. 3. Hardware for parallel generation of shape (1,1), with I = 2 input vectors in
parallel. For each input vector, we replicate the target hardware and emulation of LUT
1, and LUT 0 for each of p different configurations. We use this design for both breadth-
and depth-first generation. Dotted lines indicate hardware omitted for clarity.

quence c..c + p, (b) thus the log2(p) least-significant bits of each configuration
are constant, and can be emulated with ROMs.

3.3 Logic Decomposition

This section shows how we use logic decomposition to improve the measure of
the upper bound number of LUTs needed to implement the target design from
the initial maximum.
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Fig. 4. Using logic decomposition: motivating example. One benchmark (a) is decom-
posed into a five-input function and a NOR gate with input labelled x (b). We show
that only designs (c) and (d) need be considered, a considerably smaller search space
than for a general six-input function, and for LUT 0, we need only generate three-input
function F.

Logic decomposition breaks a circuit into a collection of subcircuits and their
connections. To show the potential benefits of logic decomposition, consider a
small example: output 14 of ISCAS benchmark s298. This has six observable



inputs: too large to generate on a single CPU or FPGA. The total search space
for a six-input function is of order O(2128), using up to seven LUTs. Fig. 4
shows the results of decomposing this design (a) into (b): a two-input NOR
gate and a five-input prime (non-decomposable) block. After decomposition,
we can reduce the search space to (c) and (d) : a five-input function takes
at most three LUTs (d), and this design can implement the NOR in LUT 0.
Three LUTs is a significant search-space reduction compared to seven without
decomposition. Furthermore, because part of the function of LUT 0 is now fixed,
its search space reduces to a three-input function F (d) (search space size 223

=
28, compared to 216 for a 4-input function). The total search-space reduction
is thus 216/28 = 256. Also, the bounds improve from 2..3 (latency) and 2..7
(area) to 2..2 (latency) and 2..3 (area). Logic decomposition improves the upper
bound, generating each subsearch separately. Although the overall result is no
longer optimal, each generated subcircuit remains optimal.

Table 3. Range improvement. Shows number of observable inputs, minimal shape
found and results from Xilinx XSTv8.1 (X) and for DAOmap (D) and FlowMap (F),
using the RASP package from UCLA [13].

Name Output #Obs. #Shapes Shape #LUTs Area bounds Latency bounds
Inputs X D F (old) (imp.) (old) (imp.)

s27 1 5 2 (1,1) 2 5 5 2..3 2..2 2..2 2..2
2 5 2 (1,1) 2 2 2 2..3 2..2 2..2 2..2
3 5 2 (1,1) 2 5 5 2..3 2..2 2..2 2..2

s298 8 5 2 (1,1) 2 3 3 2..3 2..2 2..2 2..2
10 5 2 (1,1) 2 3 3 2..3 2..2 2..2 2..2
12 7 268 (2,1) 3 5 5 2..15 3..3 2..2 3..3
14 6 18 (2,1) 3 3 3 2..7 3..3 2..2 3..3

b01 4 5 2 (1,1) 2 3 3 2..3 2..2 2..2 2..2
5 5 2 (1,1) 2 3 3 2..3 2..2 2..2 2..2
6 5 2 (1,1) 2 3 3 2..3 2..2 2..2 2..2
7 5 2 (1,1) 2 2 3 2..3 2..2 2..2 2..2

Because circuit generation takes time exponential in the number of design in-
puts, we choose a disjoint decomposition method (decomposed functions have no
common inputs); specifically, we use Plaza and Bertacco’s STACCATO method
and software [12]. Staccato decomposes a logic function into a tree of subfunc-
tions, each with disjoint inputs. Each subfunction is either associative (AND,
OR, XOR), or a prime function – one that cannot be decomposed further.

Our approach divides into four steps: (1) apply logic decomposition to design,
(2) traverse the decomposition tree, separating out the prime (non-decomposable)
blocks, (3) generate each prime block, (4) build the output hardware from the
generated blocks. Step 3 applies the generation techniques designed in the rest
of this paper, using the global optimization goal (latency or area). Note that the
decomposed prime blocks may still have too many inputs to practically generate;
these cases must rely on conventional tools for optimization.



3.4 Optimising for low power

The proposed search for low area and low latency is also useful for low power
consumption, since power is proportional to area and depth of logic. We can
further adapt our search for low power consumption as follows: first, we can
reorder graph generation so graphs with long wires skipping one or more LUTs
are considered after designs without such wires. Long wires tend to use more
power in routing resources than neighbour wires between LUTs. Second, designs
with high fan-in or fan-out tend to use more power than designs with low fan-
in/out and can be ordered after them. Third, some LUT configurations may use
more power than others – this requires careful modelling and characterisation
of LUTs in the target technology. Finally, power estimation software can be
included in the enumeration process, with early exit for designs estimated to use
more power (reordered to be searched after lower-power designs).

4 Results and evaluation

This section shows results for software and hardware generation for several IS-
CAS benchmarks, showing original and improved bounds achieved. We also show
estimated power use for replicated units of the circuit graphs found.

Table 3 shows benchmarks chosen from the standard ISCAS 85, 89 and 99
sets, with bounds of LUTs for area and latencies – these worst-case results are
the initial upper and lower bounds from table 1. The XST, DAOmap [15] and
FlowMap [14] results are for each output individually – we remove hardware
for other outputs. The bounds improvement results for these benchmarks show
runtime and minimal shapes found (software results run on an Intel Xeon 2Ghz
processor). Generation times vary up to an order of magnitude. All the software
generation results correspond to an generation rate of roughly 4.8 × 106 config-
urations per second, about 20% the rate of our hardware. Hardware generation
runs on a single Xilinx XC2V6000 FPGA (Celoxica RC2000 board).

Table 4 shows power consumption of designs similar to those found. Since
enumeration necessarily considers small designs, we replicate the designs many
times to show the general trend. It can be seen that there is a potential power
saving of 11% to 22% when a 3-LUT design is optimised to one with 2 LUTs.

5 Conclusion

We define smart enumeration and show how it can apply to technology mapping.
We introduce a methodology for optimising circuits for FPGA implementation
that combines logic minimization and technology mapping. We develop a four-
step process to give the effect of generating all possible circuits ordered by user
optimization goal: latency or area. Our reconfigurable hardware implementation
speeds up this process by rapidly finding which generated circuits match the
target design. We use logic decomposition to guide and speed up our search
process, eliminating searches using the resulting decomposition tree. Although



Numbers of inputs LUTs FFs instances
500 1000 2000 4000 8000

5 3 6 614 879 1479 2653 4992
5 2 6 543 738 1195 2085 3856
6 2 7 552 755 1238 2180 4054
7 2 8 560 773 1281 2274 4252

Table 4. Estimated power consumption in milliwatts for replicated units of the designs
enumerated for two and three LUTs. The results are obtained from Xilinx Virtex-II
Web Power Tool Version 8.1.01.

our approach is only globally optimal for small designs, it is still locally optimal
for large designs, and can be applied to building blocks of large designs. We
show that if the design can fit into fewer LUTs, the power consumption can be
reduced substantially.

Current and future work includes porting generation to the Cube, a large
multiple-FPGA machine developed to exploit massive parallelism. This is ideal
for circuit generation as many generators can run in parallel across multiple FP-
GAs. We would also like to extend generation to cover multiple-output designs,
sequential designs and other design elements beyond LUTs. Our ultimate goal is
to subsume many traditionally separate optimization steps into one generation
step, with results guaranteed to be optimal.
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