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ABSTRACT
Due to resource and power constraints, embedded proces-
sors often cannot afford dedicated floating-point units. For
instance, the IBM PowerPC processor embedded in Xilinx
Virtex-II Pro FPGAs only supports emulated floating-point
arithmetic, which leads to slow operation when floating-
point arithmetic is desired. This paper presents a customiz-
able mathematical library using fixed-point arithmetic for
elementary function evaluation. We approximate functions
via polynomial or rational approximations depending on the
user-defined accuracy requirements. The data representa-
tion for the inputs and outputs are compatible with IEEE
single-precision and double-precision floating-point formats.
Results show that our 32-bit polynomial method achieves
over 80 times speedup over the single-precision mathemati-
cal library from Xilinx, while our 64-bit polynomial method
achieves over 30 times speedup.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]:
Real-time and embedded systems; D.3.4 [Programming
Languages]: Processors—code generation, optimization.

General Terms
Measurement, Performance, Design.

Keywords
Embedded systems, reconfigurable computing, function eval-
uation, fixed-point arithmetic.

1. INTRODUCTION
The evaluation of elementary functions is often the perfor-

mance bottleneck of many compute-bound applications [15].
Examples of these functions include logarithm log(x) and
square root

√
x. Evaluating such functions efficiently while

meeting the precision requirements is particulary important

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’05, September 24–27, 2005, San Francisco, California, USA.
Copyright 2005 ACM 1-59593-149-X/05/0009 ...$5.00.

Our approach

Instructions Instructions
Instructions
generation

using Matlab

Embedded
integer

processor

Embedded
integer

processor

Embedded
integer

processor

Math
co-processor

Floating-point
emulation

(a) (b) (c)

Figure 1: Overview of current and the proposed em-
bedded processors. Current approach includes (a)
using co-processor and (b) using floating-point em-
ulation.

for embedded applications, where stringent resource and
power constraints are enforced.

Advanced FPGAs enable the development of configurable
SoC systems and high-speed function evaluation units that
are customized to particular applications. As shown in Fig-
ure 1(a), in embedded systems, the integer processor is usu-
ally incorporated with one or more dedicated coprocessors
such as a math coprocessor for fast function evaluation,
which results in a tradeoff between area, cost and perfor-
mance. Figure 1(b) illustrates the emulated floating-point
mathematical library from Xilinx [5]. In this approach,
floating-point arithmetic is emulated using integer opera-
tions only without the use of a coprocessor 1. Performance
degradation and code space consumption are the two major
problems for using this approach.

In this paper, we propose an Integer Mathematical Gen-
eration tool, IMGen, which makes use of optimized fixed-
point (integer) arithmetic for internal computations. IEEE
single and double precision floating-point formats are used
for both the input and output formats such that internal
computation is transparent to the users. A design generator
is used to automatically select the best polynomial/rational
approximation for internal computations and the degree of
computation for a given error tolerance.

1Recently, Xilinx has released the Virtex-4 FX FPGA which
has an Auxiliary Processor Unit (APU) [1] that can connect
the math coprocessor using FPGA fabrics. In this work, we
compare the designs without using this math coprocessor.



Table 1: Instruction latency comparison of different
processors. (* using floating-point co-processor.)

ARM 7 PowerPC 750 MicroBlaze MIPS32 24k

add 1 1 1 4
multi 3 5 3 4
fmulti 4* 4* 6* 4
idiv n/a 19 34 32

The main contributions of this paper are:

• IMGen, a customizable library for floating-point func-
tion evaluation based on the integer instruction set
found in embedded processors.

• automatic code generation and optimization within
IMGen using Matlab to customize precision, and trade
offs involving code space, performance and accuracy.

• an evaluation of the proposed approach by automat-
ically selecting polynomial or rational approximation
for a given function, accuracy requirement and execu-
tion time for embedded integer processors.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 presents the integer in-
struction set of the IBM PowerPC405. Section 4 presents
the methodology for enabling the automatic library genera-
tion and optimizing the code generation. Section 5 provides
error analysis for our function evaluation library. Section 6
describes the optimizations we perform for code generation
and code space minimization. Section 7 discusses results,
and Section 8 provides conclusions and future work.

2. RELATED WORK
We consider an elementary function f(x), where x and

f(x) have a given range [a, b]. The evaluation of f(x) usually
consists of three steps [19]: (1) range reduction [8] which
reduces x over the interval [a, b] to a more convenient x′

over a smaller interval [a′, b′], (2) function approximation
on the reduced interval, and (3) range reconstruction which
expands the final result back to the original result range.

Function evaluation for both hardware designs [23] and
software designs [14] has been well presented in the litera-
ture. Lee et al. [15] explore the effects of using different input
ranges and precisions on FPGA area and speed. Mencer
et al. [18] study pipelined function evaluation using table
lookup, CORDIC , rational and polynomial approximations.
Other efforts include using small multipliers [9], IBM RISC
System/6000 [17], AMD K5 processor [16], Intel IA-64 [13]
in recent years.

Paul et al. [22] discuss if dedicated instruction sets for
elementary function evaluation should be incorporated into
computer systems. On the other hand, much research has
been focused on accuracy, such as multiple-precision for func-
tion evaluation [7], IEEE floating-point standard mathemat-
ical library [10], quad-double precision [11] and quadruple
precision [6] arithmetic.

Recent work [12] develops a math library for the Intel
XScaleTM architecture that has an efficient software imple-
mentation of the basic operations and math library routines.
Moreover, code optimization for Digital Signal Processors
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Figure 2: Design tool flow using Matlab to generate
the library C source code for the library. The user
can specify the require accuracy/error requirement
for the library.

(DSP) is also important. Another recent work [20] shows
that optimized C functions can achieve up to 300% perfor-
mance gain. In this paper, we achieve performance improve-
ments by using the generated Integer Mathematical Library,
IMGen, and an integer processor without any additional
hardware cost. Our proposed method is easily applicable to
any embedded integer processor such as the Xilinx MicroB-
laze [3], ARM processor in Altera Excalibur [2] and DSPs.

3. INTEGER INSTRUCTION SETS
Instruction processors play an important role in embed-

ded systems. We classify these processors based on their
datapath width such as 8-bit, 16-bit, etc. The automated
library generation framework proposed in this paper is ap-
plicable to all integer processors. To demonstrate our cus-
tomizable precision-based function evaluation method, IM-
Gen, we have selected the IBM PowerPC405 from Xilinx
as a platform. The PowerPC405 [5] is a 32-bit implemen-
tation of the PowerPC embedded-environment architecture
that is derived from the PowerPC architecture. It also has
a fixed-point execution unit that is used for 32-bit compu-
tation and has thirty-two 32-bit general purpose registers.
The processor has 16KB 2-way set associative instruction-
cache and data-cache, respectively. In this work, we set the
clock speed of the processor, the processor local bus and the
bus components to 100MHz.

Industrial integer processors include ARM, MIPS, Pow-
erPC and the Xilinx embedded software processor MicroB-
laze. Table 1 shows a latency comparison of different ar-
chitectures. We include some important instructions such
as multiplication (multi) and integer division (idiv) in this
comparison. The design method we present in this paper
enables code generation for all these integer processors.

4. AUTOMATION METHODOLOGY
This section introduces our approach to automating the

customization of precision based function evaluation for in-
teger processors. The method we propose is technology-
independent, and we use the embedded PowerPC processor
as a specific example to demonstrate the flexibility and per-
formance gain of this method.



Evaluating f(x) = log(x)

// Range Reduction
input.sng as flt = x;
exp = input.sng as fld.exp - 126;
ix = fp2int(input); // y = ix;

// Evaluation Method
// f(y) where y = [0.5, 1)
// e.g. degree-3 polynomial
f1 = ((c3 × y + c2) × y + c1) × y + c0;

// Range Reconstruction
s1 = range(exp); // find exp× log(2)
f1 = (f1 >> overflow) + s1;
output = int2fp(f1);
output.sng as fld.exp += overflow;

Evaluating f(x) =
√

x

// Range Reduction
input.sng as flt = x;
exp = input.sng as fld.exp - 126;
ix = fp2int(input);
ix = (exp[0])? ix >> 1 : ix; // y = ix;

// Evaluation Method
// f(y) where y = [0.25, 1)
// e.g. degree-2 rational
f1 = ((c2×y+c1)×y+c0)/((d2×y+d1)×y+d0);

// Range Reconstruction
exp = (exp[0])? exp+1 : exp;
correction = exp >> 1;
output.sng as fld.exp += exp - correction;

Figure 3: Design methods using polynomial and
rational approximations. For example, log(x) uses
degree-3 polynomial approximation and

√
x uses

degree-2 rational approximation.

4.1 Overview
The general idea of this work is user-transparent fixed-

point computation that provides an efficient floating-point
function library without any additional hardware cost. A
library generator shown in Figure 2 is developed for con-
structing IMGen which targets various integer processors.
The Matlab based code generator, which has direct access to
the Maple symbolic library, inputs the mathematical func-
tion name and the required accuracy, and outputs opti-
mized C code. This generator enables users to customize
the output precision based on the specific embedded ap-
plication by using a static error analysis. This error anal-
ysis is comprised of the approximation error reported by
the Maple command and the quantization error induced
by the fixed datapath. This integer mathematical library
can be integrated with any embedded software. The pro-
posed approach enables: (1) automating the selection of ap-
proximation method, bitwidth and polynomial degree, (2)
generating a customizable mathematical library from user-
defined parameters to result evaluation, and (3) optimiz-
ing the fixed-point software implementations for elementary
function evaluation. We test the code generated by our
framework by running on an embedded PowerPC processor.
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Figure 4: Maple generates the polynomial coeffi-
cients and the IMGen generator adjusts the data-
path that can maximize the accuracy. x is input,
y = f(x) is output.
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Figure 5: Maple generates the rational coefficients
and the IMGen generator adjusts the datapath that
can maximize the accuracy. x is input, y = f(x) is
output.

Automation
Our Matlab based code generator enables automation from
user-defined error requirement to any particular elementary
functions. For a given error requirement, the generator first
generates coefficients using the Maple symbolic library from
Matlab for both polynomial approximation and rational ap-
proximation. In the next sub-section, we present the de-
tail of the approximations and the operations for enabling
custom precision. We provide both 32-bit and 64-bit in-
ternal integer computations in order to create the custom-
precision library. In the approximations, we can get better
performance by using fewer polynomial degrees, however we
also get a higher approximation error. When the embedded
processor evaluates a given function using the generated C
code, the input data x is originally in floating-point format.
The range reduction transforms this number into its inte-
ger representation by scaling. As shown in Figure 3, since
the exponent field of IEEE single precision is biased 127,
we can directly use the mantissa field (fraction part) of the
input data. The details of the integer and floating-point
conversion are shown in Figure 6. We provide an analytical
error analysis and define the error terms. For example, the
approximation error is introduced by the Maple command
when we generate the polynomial coefficients, and the quan-



C-code: Data structure for input/output
typedef struct sng flds {
unsigned sgn : 1; // 0x8000 0000
unsigned exp : 8; // 0x7F80 0000(bias 127)
unsigned val : 23; // 0x007F FFFF
} SNG FLD;

C-code: fp2int - floating-point to integer
output = input.val << 8;
output += 0x80000000;
output = output >> 1;

C-code: int2fp - integer to floating-point
input = (input >= 0)?
(sign = 0, input) : (sign = 1, -input);
exp = check leading zero(input);
input = input << exp;
output.val = (input & 0x80000000) >> 8;
output.exp = 129 - exp;
output.sgn = sign;

Figure 6: fp2int and int2fp operations (floating point
and integer data conversions).

tization error is introduced in the datapath since infinite
precision is required to represent the exact value.

Generation
IMGen uses the calculated maximum errors including ap-
proximation and quantization errors to determine the best
possible library for a given error requirement. The output of
the library construction includes: a library file, a reported
generation time, an error upper bound, cycle counts from
the hardware timer, an actual measured speedup from the
embedded system when comparing with the Xilinx emulated
math library and code space usage of the embedded C li-
brary. Lee et al. [15] show how we can achieve elementary
function approximation using hardware, in this work we can
apply the same principle to include more elementary func-
tions. An important step in generating different functions
is efficient code generation for range reduction and range
reconstruction.

Optimization
In the code generator, several optimization techniques are
used such as loop unrolling. By unrolling loops, we simplify
decimal point correction. The basic idea is to make use of
the information collected during Matlab code generation. In
other words, the integer computations inside the embedded
processor are pre-computed, as a result we achieve a per-
formance gain. In Figure 3, we describe two conventional
ways of implementing two functions evaluated in this pa-
per. We show how we achieve range reduction, function
approximation and range reconstruction. As shown in the
figure, we use a degree-3 polynomial approximation when
f(x) = log(x) and we use a degree-2 rational approximation
when f(x) =

√
x.

The input x is first stored in a union data structure which
has both floating − point (fp) and bit− selective elements
such that we can easily select the sign-bit, mantissa and
exponent of the input data. The IEEE single and double
representations are used in the data structures. Next, we
correct the exponent value since it is biased 127, and trans-

Table 2: Main types of embedded PowerPC arith-
metic and logical instructions.

Move mr rD, rA
Add Carrying addc rD, rA, rB
Add Extended adde rD, rA, rB

Count Leading Zeros Word cntlzw rA, rS
Multiply Low Word mullw rD, rA, rB
Multiply High Word mulhw rD, rA, rB

OR immediate ori rA, rS, UIMM
Shift Left Word slw rA, rS, rB

Shift Right Algebraic Word sraw rA, rS, rB
Shift Right Word srw rA, rS, rB

Subtract from Immediate Carrying subfic rD, rA, SIMM

form the input x into the corresponding integer x (which is
y) in the figure. Finally, for the range reconstruction, differ-
ent techniques are applied according to the input function.

4.2 Polynomial Approximation
The generated floating-point coefficients are stored in an

array and are scaled up to integers which maximizes the use
of the 32-bit word size. Horner’s rule is used to evaluate the
polynomials. An adaptive datapath bit-width optimization
is used to adjust the datapath for a correct decimal point
in order to avoid any data overflow or underflow. As shown
in Figure 4, the input floating-point x is transformed into
its equivalent integer format by fp2int(), and the final inte-
ger result is converted back to the floating-point domain by
int2fp().

4.3 Rational Approximation
Rational approximation can be represented as follows:

f(x) =
((cnx + cn−1)x + . . . c1)x + c0)

((dnx + dn−1)x + . . . d1)x + d0)

In the code generation, the degrees of the numerator and
the denominator are the same. The major bottleneck is the
final division at the end of the evaluation. A small degree of
rational approximation can always achieve a similar or bet-
ter accuracy than a relatively higher degree in polynomial
approximation. Figure 5 shows a second-degree rational ap-
proximation with two multiplications, two additions and one
division.

4.4 Custom Precision Code
We use fixed-point (integer) arithmetic for all internal cal-

culations. First, we obtain the fractional bits from the in-
put value and scale it up to the corresponding integer value,
while an adaptive scaling method for the polynomial coeffi-
cients is used to avoid the mis-calculation. The important
point is to maintain the correct “virtual” decimal point. In
the following sub-sections, the input/output conversions and
the internal basic operations are described. Note that we
only need to modify these integer arithmetic operations for
different integer processors. In Figure 6, the 32-bit floating-
point to integer conversions are described. For example, the
input data is corrected by adding the hidden MSB bit. The
64-bit conversion is not shown here but it basically uses the
same principle.



PowerPC assembly: s4.s5 = s2.s3 � s1

msl(s1, s2, s3, s4, s5);
r21 = s1, r22 = s2, r23 = s3
subfic r11, r21, 32;
slw r22, r22, r21;
srw r20, r23, r11;
or r22, r22, r20;
addi r11, r21, -32;
slw r20, r23, r11;
or r22, r22, r20;
slw r23, r23, r21;
s4 = r22, s5 = r23

Figure 7: 64-bit integer shift left operation using
32-bit registers (s1,s2,s3,s4,s5).

PowerPC assembly: s4.s5 = s2.s3 � s1

msar(s1, s2, s3, s4, s5);
r21 = s1, r22 = s2, r23 = s3
subfic r11, r21, 32;
srw r23, r23, r21;
slw r20, r22, r11;
or r23, r23, r20;
addic. r11, r21, -32;
sraw r20, r22, r11;
ble $+8;
ori r23, r20, r20;
sraw r22, r22, r21;
s4 = r22, s5 = r23

Figure 8: 64-bit shift algebraic right operation using
32-bit registers (s1,s2,s3,s4,s5).

Add Operation
In Table 2, the main instructions that are used for IMGen
are shown. The supported integer instructions include arith-
metic, logical, compare, rotate and shift instructions. For
example, the add carrying instruction addc adds the con-
tents of register rA and rB to register rD. The latency of
most instructions is one cycle, while the latencies for multi-
ply and divide are 4 cycles and 35 cycles, respectively. Since
PowerPC405 is an integer processor, system software re-
quires floating-point emulation which is a call interface to
subroutines within a floating-point run-time library. The
subroutines emulate the operation of floating-point instruc-
tions.

Addition and multiplication are the two major operations
for function evaluation. In IMGen, we support both 32-bit
and 64-bit implementations. Note we add two 64-bit data
where s3 = s1+ s2. Also, PowerPC405 is a 32-bit processor
and the general purpose registers are all 32-bits, we need
to use the add carrying and the add extended instructions
to complete this operation. The carry from addc is added
to the consecutive adde operation. Note that the same idea
can be generalized to any 8-bit or 16-bit processor and to
custom output precisions.

Multiply Operation
In the code generator, we provide two library functions that
are used for 32-bit and 64-bit integer multiplication. If the

x (1,31) C1 (2,30) C0 (3,29)

d (3,29)

y (3,29)

32-bit 32-bit 32-bit

32-bit

32-bit

Figure 9: Degree one approximation for log (x).

design has a lower accuracy requirement, a 32-bit imple-
mentation and the “multiply-high-word” mhw() operation
is used. On the other hand, if a 64-bit datapath is selected,
s1, s2 and s3 are stored into the corresponding MSB and
LSB registers and the “multiply-low-word” mlw() operation
is also used. For example, the two input values are moved to
two general purpose registers, r21 and r22, and then perform
the embedded assembly instructions “mullw” and “mulhw”,
the final result is placed at the r23 register and thus finally
move back to the s3 variable.

Divide Operation
An optimized division operation is crucial for the rational
approximation. We cannot directly use the 32-bit divide
instruction from PowerPC since the result of the integer
division for our case is always zero. Moreover, this divi-
sion instruction uses a sequential divider in hardware and is
very slow when compared to other instructions. As a result,
we adopt the “shift-and-subtract” method [21] to perform
this division. Our division simply uses “add”, “shift” and
“negate” instructions.

Shift Operations
Our adaptive datapath method corrects the decimal point
involved in the polynomial and rational approximations. De-
pending on the input coefficients, the input range (the inte-
ger part of the coefficient) can be very large and we need to
scale up the coefficient with a smaller scaling factor. This
scaling operation is performed by bit shifting. In the pro-
posed library, we have provided six shift operations: shift
left, shift right and shift algebraic right for both 32-bit and
64-bit designs. As shown in Figure 7 and Figure 8, the 64-bit
shift left and shift algebraic right are provided. For exam-
ple, the s2.s3 refers to the MSB of the 64-bit data storing
at s2 while the LSB storing in s3. The final result is shifted
by s1 bits and is stored into s4.s5.

5. ERROR ANALYSIS
We divide the error analysis into two parts: approxima-

tion error and quantization error which is further divided
into three parts: range reduction, function approximation
and range reconstruction.

Approximation Error
Error is introduced in the function approximation step be-
cause approximation error is the error of approximating a
function using polynomials that is independent of the preci-
sion we used. First, the Maple command we used to generate
the polynomial coefficients reports this approximation error.
Second, the quantization in the datapath since infinite pre-



Table 3: Approximation errors using polynomial
and rational methods reported by Matlab for log (x).

Degree Polynomial approx. Rational approx.
1 0.02983005 0.0008607941
2 0.00342398 0.0000017146
3 0.00044161 0.0000000032

cision is insufficient to represent the exact value and the
datapath in our designs is either 32-bit or 64-bit. We aim to
maintain the highest accuracy with the available bitwidth
and try to minimize the accumulated quantization error.

Etotal = Eapproximation + Equantization

Equantization = Epoly approximation + Erange reconstruction

The above two equations summarize the key ideas of this
error analysis. The quantization error has three parts: range
reduction, function approximation and range reconstruction.
The range reduction step of the evaluated functions is exact
where no quantization is involved as shown in Figure 3. We
summarize the approximation errors reported by Matlab in
Table 3. We can see that the approximation error generated
by using the rational method is much lower than the poly-
nomial method. Note that for example, degree-3 means that
the degree of both the numerator and the denominator are
three. In this error analysis, we only consider the polynomial
approximation step and the range reconstruction step.

Quantization Error
Much research work focuses on the bit-width optimization
problem, especially for the fraction bit-width optimization
on hardware design [15]. These approaches mainly minimize
the hardware bit-width in order to meet the error require-
ment due to the area and latency constraints. In this paper,
the problem we are solving is constrained by the fixed dat-
apath. As shown in Figure 9, since all the datapaths in this
calculation are fixed to 32-bits, the proposed adaptive data-
path method selects the best position of the decimal point.
For example, we use one bit to store the integer part and
31 bits to store the fraction part of x. The Maple command
which generates polynomial coefficient C1 needs two bits for
the integer part, as a result the multiplication product d
needs three bits for the integer part. When we perform an
addition, the two operands need to have the same decimal
point, thus the final fraction bits for the y = f(x) equals
29 bits. As shown below, we describe how we perform this
static error analysis in the library generation.

We denote Esignal as the error of a particular signal. The
polynomial approximation error bound of the signals in Fig-
ure 9 is described in Figure 10. The error bound induced by
the reconstruction is given in Figure 11. The floating point
value, input x is exactly transformed to its integer format,
thus there is no quantization error in the input. Note that
the static error analysis includes the quantization error in
the computation, but not the approximation error by the
Maple approximation. There are two main ways to quantize
a signal: truncation and round-to-nearest. Here we define
FB as the fractional bitwidth. Truncation and round-to-
nearest can cause a maximum error of 2−FB and 2−FB−1.
As shown in the above equations, the coefficients C0 and

Ey = Epoly approximation

Ey = Eaccum + Equantizationy

Ey = (Ed + EC0
) + 2−29

Ed = EC1
+ 2−29

EC1
= 2−31

EC0
= 2−30

Therefore,
Ey = 2−31 + 2−29 + 2−30 + 2−29

Ey = 5.12227 × 10−9

Figure 10: Static error analysis of degree-one log(x).

Erange reconstruction = Elog 2 × exp
Overflowmax = 5

Elog 2 = 2−31

Eoverflow = Elog 2 × 2
Eaccum = Elog 2 × Eoverflow

Eaccum = 2−31 + 2−30 + 2−29 + 2−28 + 2−27

Therefore,
Erange reconstruction = 4.1607 × 10−9

Figure 11: Error analysis of log(x) range reconstruc-
tion.

C1 are rounded to the nearest, and the error at the output
y = f(x) is the total of accumulated error and the quantiza-
tion error of this signal. The second part of the quantization
error belongs to the range reconstruction.

Below, we show the minimum error bounds provided by
the IEEE single and double precision formats. It means that
if the final computed error is smaller than these two values,
the library/design can assure the accuracy requirement of
either IEEE single or double precision.

Esingle = 2−23 = 1.192 × 10−7

Edouble = 2−52 = 2.220 × 10−16

Now that the quantization error of the above example is
lower than Esingle, however the approximation error of this
example is Eapprox = 0.02983 as shown in Table 3 which is
much higher than Esingle. We apply this static analysis in
our code generation to cover all the possible errors in the
calculation for determining the best possible embedded C
code.

6. OPTIMIZATION
This section discusses the optimization techniques we use

for code generation, and also for code space optimization.

Optimized Code Generation
One of the code generation optimizations we use is loop
unrolling. As shown in Figure 12, two code fragments of
degree-one function evaluation are used to illustrate the ba-
sic idea. the array ic is used to hold the polynomial coeffi-
cients. CORRECTION represents the adaptive datapath correc-
tion for adjusting the decimal point. Figure 17 shows that
when we use a higher polynomial degree, a smaller approxi-



long ic[2] = {1488522235, -1456492463};
#define CORRECTION if (j==0) s3 = s3 << 1;

unoptimized code
ix = fp2int(input);
iy = ic[0];
for (j=0; j<degree; j++){

mhw(ix, iy, s3);
CORRECTION
iy = s3 + ic[j+1];

}

using loop-unrolling technique
ix = fp2int(input);
mhw(ix, ic[0], s3);
s3 = s3 << 1;
iy = s3 + ic[1];

Figure 12: Code generation optimization example.
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Figure 13: The effect of compiler optimization on
library performance for log(x) function evaluation.

mation error is obtained while the accumulated quantization
error is increased. This U-shaped curve not only describes
the effect of changing the polynomial degree, but also shows
the effect of using code generation optimization. The max-
imum error shown in the graph represents maximum error
of the empirical study of thousands of sample data against
the Matlab result. These code generation optimization tech-
niques are also applied to 64-bit datapath designs and ra-
tional approximation designs.

Compile Time Optimization
Besides the code generation optimization, compilation tech-
niques such as code reuse and register renaming are ex-
tremely important for instruction processors. Figure 13
shows that the existing emulated math library is highly opti-
mized since further compilation optimization does not affect
the overall performance. On the other hand, the generated
IMGen library is compiled with the highest optimization
in order to compare with the emulated math library.

User input >> genlib(’log’, 0.01)

Phase 1: Maple command generates polynomial coefficients

Phase 2: Static error analysis calculates quantization error
Phase 3: Select polynomial/rational approximation

Phase 4: Select 32-bit/64-bit implementation
Phase 5: Generate embedded C code

and execute in embedded integer processor

Phase 6: Output performance data and statistical error
text data bss dec hex filename

44232 4296 48 48576 bdc0 TestApp/executable.elf
cycle count for the Xilinx math library: 63335

cycle count for the bus overhead: 60
cycle count for the IMGen library: 618
average speedup: 1.13e+002

maximum error : 0.0034241
IMGen is generated and tested in 4.904e+001 seconds

Figure 14: Input/Output of the automated system.
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Figure 15: Our embedded system under testing.
(PLB: processor local bus, OPB: on-chip peripheral
bus, and BRAM: block RAM.)

Polynomial Degree Automation
The inputs of the IMGen generator are the mathematical
function name and the error requirement. As shown in Fig-
ure 14, the Matlab interface passes the parameters for the
error analysis as described in the previous section. The em-
bedded C code is generated and evaluated in the prototyping
system with the best execution time and accuracy tradeoff.
In the same figure, it shows that the Matlab function to gen-
erate the library is for example “genlib(’log’,0.01)”. The
polynomial degree and the design methods are automati-
cally selected by the library generator based on the input
function and also the user-defined error requirement.

Instruction Code Space Optimization
The change of the polynomial degree is independent of the
code space usage for the emulated math library, whereas
the code space of IMGen increases gradually with a higher
polynomial degree. In this work, we demonstrate that the
proposed framework not only provides a flexible and efficient
custom-precision math library, but also reduces the required
instruction code space which is very expensive in embedded
systems. The major reason for the reduction is the fact that
our method avoids the floating point to integer conversions.
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Figure 16: 32-bit log(x) function evaluation without
optimization. Speedup comparison between the Xil-
inx emulated floating point math library (precision:
IEEE single) and IMGen (precision: variable).
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Figure 17: U-shaped curve for the 32-bit approxi-
mation and quantization errors of log (x).

7. RESULTS
This section presents the experimental setup and evalua-

tion of the proposed approach using different methods.

Experimental Setup
We evaluate the proposed design flow using the Xilinx ML310
system which has an XC2VP30 Virtex-II Pro device [4] em-
bedded with two PowerPC processors. The embedded sys-
tem also enables prototyping of the soft-processor approach
as shown in Figure 15. The OPB Timer is connected to
the embedded PowerPC through the OPB and PLB buses.
The measured cycle counts refer to the clock cycles of the
OPB Timer for the function evaluation.

Evaluation
As shown in Figure 16, the result of evaluating log(x) in an
embedded processor shows that over 100 times speedup is
achieved when the error requirement is higher than 10−3. In
this paper, we use the OPB timer to measure the exact time
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Figure 18: Maximum error comparison using poly-
nomial method and rational method of log (x).
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Figure 19: Speedup comparison using polynomial
method and rational method of log (x).

for computation. The embedded processor sends the start
and done signals to the timer before and after function eval-
uation. The register in the timer records the exact number
of clock cycles. In order to measure bus latency, we send a
start signal followed by a stop signal to the timer without
running any extra instructions in the embedded processor.
This OPB bus latency is defined as Toverhead, Tmath library

is the time taken to evaluate functions in the emulated math
library, and TIMGen is the time (in cycle counts) spent in
IMGen.

The equation below describes how we measure the speedup
using the OPB Timer. We also randomly generate a large
testbench dataset in order to statistically measure the speedup.
Looking at Figure 17, we can see that significant speedup
is achieved when optimization techniques are applied to code
generation. Figure 18 shows that the rational method achieves
much lower error than the polynomial method for small de-
gree. Note that the maximum error values shown in this
graph are much higher than those in Table 3. This is be-



Table 4: Comparisons of 32-bit, 32-bit-opt and
64-bit implementations using degree-4 polynomial
method.

32-bit 32-bit (opt.) 64-bit

Xilinx Math (cycles) 63759 63699 64370
Bus latency (cycles) 60 60 60

IMGen (cycles) 1369 672 1921
Speedup factor 48x 103x 34x
Measured error 0.00005886 0.00005920 0.00000159

Table 5: Comparisons of log(x) and
√

x polynomial
approximations using degree-6 polynomial method.

log (x)
√

x

Xilinx Math (cycles) 62725 9159
Bus latency (cycles) 60 60

IMGen (cycles) 1696 467
Speedup factor 38x 22x
Measured error 0.000004313 0.0008375

Table 6: Comparisons of log(x) and
√

x polynomial
approximations with reference designs [12].

Intel XScaleTM [12] IMGen

Single precision Double precision 10−5

Latency [cycles] Latency [cycles] Timer [cycles]
√

x 84 183 587
log (x) 215 433 710

cause the dominating factor of quantization error varies with
the degree value. On the other hand, in Figure 19 we ob-
serve that the penalty of the division used in the rational
method is high when compared to the polynomial method.
The proposed design flow satisfies custom precision require-
ments for most space expensive embedded systems. The
division in the rational method also limits the speedup fac-
tor.

Speedup = (Tmath library −Toverhead)/(TIMGen −Toverhead)

Given that we have a customized precision math library,
what is the overall speedup in real world applications? To
answer this question, we first need to profile the embedded
system program. Then according to Amdahl’s law, overall
speedup = 1

1−P+P/S
where P is the improved computation

portion, and S is the speedup factor for that improved por-
tion of the system. Now, suppose that over 60% of the
total run time is spent on function evaluations in a graph-
ics/multimedia application, and the speedup factor is 100.
The system overall speedup is 2.463.

It is obvious that using a 64-bit datapath can achieve a
higher precision, however the more internal computations
the slower the overall function evaluation. Here, we compare
the accuracy and performance using 32-bit and 64-bit datap-
aths. Table 4 shows some results using the degree-4 polyno-
mial method. We can see that, (1) the number of clock cycle
measured by the OPB Timer for both Xilinx math library
and using our code generator, (2) and the 64-bit measured
error is much lower than the 32-bit one. In the table, “Bus
latency” refers to Toverhead which is the OPB bus latency.

The execution time of each elementary math function rou-
tine varies depending on the function nature and the input
arguments. For example, as shown in Figure 5 the execution
time of log (x) is almost 6 times slower than

√
x. Although

we use the degree-6 polynomial method for both evaluations,
the speedup factor and the measured error are both highly
dependent on the input function and input arguments. We
also compare our designs with the Intel XScaleTM math li-
brary. Looking at Table 6, the latencies in terms of the
XScale processor clock and the OPB Timer are described.
Our current designs are slower than the highly optimized
Intel library, mainly because of its specialized range reduc-
tion techniques and an efficient table-lookup and software
implementation. However, our approach demonstrates the
flexibility of automatically generating customizable embed-
ded C code for integer processors with different accuracy
requirements.

8. CONCLUSIONS
This paper introduced a customizable library for floating-

point function evaluation based on the integer instruction
set used in embedded processors. We have developed an
approach for automating code generation and optimization
within this framework to customize precision in order to ob-
tain the best trade-off in embedded code space, performance
and accuracy. We evaluate this approach using the embed-
ded PowerPC processor on a Xilinx XC2VP30 FPGA. By
trading off accuracy, we achieve over 80 times speedup com-
pared to the single-precision reference mathematical library
with a static error analysis below 10−5, while a 64-bit poly-
nomial method achieves 30 times speedup when compared
to IEEE single-precision. One of the current limitations of
the framework is that the quantization error of the 64-bit
method is higher than IEEE double-precision, we can use
other function evaluation techniques such as piecewise poly-
nomial approximation and multiple words in the datapath
to achieve a higher accuracy.

Ongoing and future work includes code generation for
other integer instruction processors and comparison with
floating-point coprocessors such as the Xilinx floating-point
coprocessor using the new Auxiliary Processor Unit that in-
tegrates hardware accelerators and co-processors with the
PowerPC processor. Second, we plan to use better range re-
duction techniques targeting software implementations [12,
19]. We can also reconfigure a soft processor using FPGA
technology at run-time to achieve the best tradeoff in speed,
area and precision for specific applications.
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