
Fast Division Algorithm with a Small Lookup Table

Patrick Hung, Hossam Fahmy, Oskar Mencer, Michael J. Flynn

Computer Systems Laboratory
Stanford University, CA 94305

email: hung, hfahmy, oskar, flynn @arithmetic.stanford.edu

Abstract

This paper presents a new division algorithm, which requires
two multiplication operations and a single lookup in a small
table. The division algorithm takes two steps. The table
lookup and the first multiplication are processed concurrently
in the first step, and the second multiplication is executed
in the next step. This divider uses a single multiplier and a
lookup table with bits to produce -bit results
that are guaranteed correct to one ulp. By using a multiplier
and a KB lookup table, the basic algorithm generates a

-bit result in two cycles.

1. Introduction

Division is an important operation in many areas of comput-
ing, such as signal processing, computer graphics, network-
ing, numerical and scientific applications. In general, divi-
sion algorithms may be divided into five categories: digit re-
currence, functional iteration, high radix, table lookup, and
variable latency. These algorithms differ in overall latency
and area requirements. An overview of division algorithms
can be found in [4].

This paper introduces a new high radix division algorithm
based on the well-known Taylor series expansion. A number
of high radix division algorithms were also proposed in the
past based on the Taylor series. For example, Farmwald [2]
proposed using multiple tables to look up the first few terms
in the Taylor series. Later, Wong [5] proposed an elaborate
iterative quotient approximation with multiple lookup tables.
Wong demonstrated that only the first two terms in the Taylor
series are necessary to achieve fast division because it takes a
long time to evaluate all the power terms.

The previous algorithms consider each individual term in
the Taylor series separately; hence, many lookup tables are
needed and the designs are complicated. Our proposed algo-
rithm combines the first two terms of Taylor series together,
and only requires a small lookup table to generate accurate
results. This algorithm achieves fast division by multiplying
the dividend in the first step, which is done in parallel with
the table lookup. In the second step, another multiplication
operation is executed to generate the quotient.

2. Basic Algorithm

Let and be two -bit fixed point numbers between one
and two defined by Equations 1 and 2 where .

(1)

(2)

To calculate , is first decomposed into two groups:
the higher order bits () and the lower order bits ().
contains the most significant bits and contains the
remaining bits.

(3)

(4)

The range of is between and (), and
the range of is between and ().
Dividing by , we get Equations 5 and 6. Since

, the maximum fractional error in Equation 6 is less
than (or ulp).

(5)

(6)

Using Taylor series, Equation 5 can be expanded at as
in Equation 7. The approximation in Equation 6 is equivalent
to combining the first two terms in the Taylor series.

(7)

Figure 1 shows the block diagram of the algorithm. In
the first step, the algorithm retrieves the value of from a
lookup table and multiplies with at the same time.
In the second step, and are multiplied
together to generate the result.

2.1. Lookup Table Construction

To minimize the size of the lookup table, the table entries are
normalized such that the most significant bit (MSB) of each

Figure 1: Basic Algorithm

entry is one. These MSB’s are therefore not stored in the
table.

A lookup table with = is shown in Table 1.
represents the truncated value of to significant
bits. The exponent part of the may be stored in the
same table, but can simply be determined by some simple
logic gates. In this example, the exponent is when

, the exponent is when and
, the exponent is when .

Table 1: A simple lookup table example ()

Table entry

2.2. Booth Encoding

Booth encoding algorithm [1] has widely been used to min-
imize the number of partial product terms in a multiplier. In
our division algorithm, special Booth encoders are needed to
achieve the multiplication without explicitly cal-
culating the value of . Lyu and Matula [3] proposed
a general redundant binary booth recoding scheme. In our
case, the and bits are non-overlapping, and a cheaper
and faster encoding scheme is feasible.

We use Booth 2 encoding to illustrate our encoding al-
gorithm, but the same principle can apply to the other Booth

encoding schemes. In Booth 2 encoding, the multiplier is par-
titioned into overlapping strings of 3 bits, and each string is
used to select a single partial product.

Unlike conventional Booth 2 encoding, the encoding of
consists of four types of encoders. Figure 2 shows

the locations of these four types of encoders: the group
contains all the 3-bit strings that reside entirely within ; the
boundary string contains some bits as well as some bits;
the first string is located next to the boundary string; the

group contains all the remaining strings within .

Figure 2: Booth Encoding

The bits represent positive numbers, whereas the
bits represent negative numbers. Hence, conventional Booth
2 encoding is used in the group but the partial products
in the group are negated. As shown in the diagram, the
boundary region between and requires two additional
special encoders. Depending on whether is even or odd,
the encoding schemes for these two encoders are different. It
is possible that only one such encoder is used in the bound-
ary region, but it implies that this encoder needs to generate

multiplicand (for even). In order to speed up the
multiplication and simplify the encoding logic, two special
encoders are used to avoid the “difficult” multiples.

Table 2 summarizes the four different encoding schemes
for both even and odd . It is important to note that the first

encoder actually needs to examine both the first string
and the boundary string when is odd. If the boundary string
is , the LSB of the first string is set to instead of . If
the boundary string is not , the LSB of the first string
is set to be the MSB of the boundary string (as usual). This
encoding scheme uses all but two normal Booth encoders and
is particularly useful if the same multiplier is used for both the
first and the second multiplications.

2.3. Error Analysis

There are four sources of errors: Taylor series approximation
error (), lookup table rounding error (), the rounding
error of the first multiplication (), and the rounding error
of the second multiplication ().

The total error is equal to .
To minimize this error, the divider can be designed such that

, , , and . This means
that the table entries are truncated to bits, the first
multiplication is truncated to bits, and the second
multiplication is rounded up to bits.

Table 2: Booth Encoding of

Boundary First
even odd even odd

Bits Group Group

The Taylor series approximation error () is determined
by Equation 8. This error is most significant for large
and small . The maximum approximation error is
slightly less than ulp when and .

(8)

The lookup table has significant bits, so the maximum
truncation error ulp. Similarly, the maximum
rounding error for the first multiplication ulp,
and the maximum rounding error for the second multiplica-
tion ulp. Thus, the maximum positive error is less
than ulp (), and the maximum negative error is also
less than ulp ().

3. Optimization Techniques

This section describes two optimization techniques for the di-
vision algorithm. The first technique uses a slightly different
lookup table and allows the two multiplications to use the
same rounding mode, whereas the second technique uses an
error compensation term to further reduce the Taylor series
approximation error.

3.1. Alternative Lookup Table

As described in Section 2.3, the rounding modes of the first
and the second multiplications are different. This may be un-
desirable if the two multiplications need to share the same
multiplier. A simple solution is to use round-to-nearest mode
in the two multiplications as well as in constructing the lookup
table. Since the error terms can either be positive or negative,
the maximum total error becomes the sum of the maximum
of each error term.

Let be the table entry at with infinite precision.
The expression for the approximation error is shown in
Equation 9 below.

(9)

In order to minimize , is set to be slightly larger
than . For each , the optimum table entry is deter-
mined by setting the maximum positive error (at) to
be the same as the maximum negative error (at).
Equation 10 shows the expression for the optimum table entry

.

(10)

The approximation error is at its maximum when and
. Using Equation 9, the maximum approximation

error can easily be derived as in Equation 11. In this case,
is slightly less than ulp.

(11)

Using round-to-nearest rounding mode, ulp,
ulp, and ulp. As in Section 2.3,

the total error of the alternative lookup table is also less than
ulp. Table 3 illustrates the same example shown in Sec-

tion 2.1 with the alternative lookup table, where
represents the round-to-nearest value of to sig-
nificant bits.

Table 3: Alternative Lookup Table ()

Table entry

3.2. Error Compensation

The Taylor series approximation error can be further reduced
by adding an error compensation term in the first multiplica-
tion. Equation 8 shows that the magnitude of the Taylor se-
ries approximation error () increases when either gets
larger or gets smaller. By looking at the first few bits of

and , it is possible to identify large and small , and
then compensate for the approximation error. However, it is
important to ensure that the approximation error is not over-
compensated and becomes positive; otherwise this would in-
crease the total error (Section 2.3).

Figure 3 depicts a simple error compensation scheme. In
this diagram, represents the positive error compensa-
tion that is used to correct the negative Taylor series approxi-
mation error. The new approximation equation becomes:

Figure 3: Error Compensation

(12)

The expression for is shown in Equation 13. De-
pending on the first few terms of and , is set to ,

, or .

(13)

The error compensation only requires an additional partial
product in the multiplier and a few simple logic gates (shown
in Equation 13). The maximum Taylor series approximation
error is ulp when and .
Figure 4 shows the approximation error with different .

Figure 4: Approximation Error with Error Compensation

A similar error compensation scheme can also be used for
the alternative lookup table shown in Section 3.1. The expres-
sions for the new approximation and the error compensation
are determined by Equations 14 and 15, respectively. In this
case, is set to be , , or depend-
ing on the first few bits in and .

(14)

(15)

4. Discussion

This paper presents a simple and fast division algorithm based
on Taylor series expansion. Using a multiplier and a lookup
table with bits, this algorithm produces a -bit
result in two steps. For example, a KB lookup table is
required for single precision (24 bits) floating point division.

The same principle can be applied to some elementary
functions, such as square root. Using the same definitions of

, , and as before, we get the following approximation.

(16)

This is very similar to the approximation used in the division
algorithm. The differences are that the term is shifted by
one bit in the numerator and the lookup table contains
entries instead of entries.

We can also combine more than the first two terms in the
Taylor series expansion. For example, if we use the first four
terms in the expansion, we get the following approximation.

(17)

As before, only a single lookup table is needed but this
algorithm also needs to calculate . Our next step is to gen-
eralize the existing algorithm and to investigate the optimum
Taylor series approximation for different input precisions.

5. References

[1] A. D. Booth. A signed binary multiplication technique.
Quarterly Journal of Mechanics and Applied Mathemat-
ics, pages 236–240, June 1951.

[2] P. M. Farmwald. On the design of high performance dig-
ital arithmetic units. PhD thesis, Stanford University,
1981.

[3] C.N. Lyu and D. Matula. Redundant Binary Booth Re-
coding. In Proceedings of IEEE Symposium on Computer
Arithmetic, pages 50–57, July 1995.

[4] Stuart F. Obermann and Michael J. Flynn. Division al-
gorithms and implementations. IEEE Transactions on
Computers, 46(8):833–854, August 1997.

[5] Derek Wong and Michael J. Flynn. Fast division using
accurate quotient approximations to reduce the number
of iterations. IEEE Transactions on Computers, pages
981–995, August 1992.

