Dynamic Circuit Generation
for Boolean Satisfiability
in an Object-Oriented Design Environment,

Oskar Mencer and Marco Platzner
Computer Systems Laboratory, Stanford University
(oskarQumunhum.stanford.edu, marco.platzner@computer.org)

Abstract

We apply our object-oriented design environment
PAM-Blox to dynamic generation of circuits for re-
configurable computing. Our approach combines the
structural hardware design environment with commer-
cial synthesis of finite state machines (FSMs). The
PAM-Blox environment features a well defined hard-
ware object interface and the ability to control the
placement of hand-optimized circuits. We integrate
the advantages of an object-oriented design environ-
ment with full control over placement at every level of
abstraction, with commercial FSM synthesis and opti-
mization.

As driving application we consider reconfigurable
hardware accelerators for the NP-complete Boolean
satisfiability problem. These accelerators require a fast
compilation of circuits consisting of instance-specific
datapaths and control automatons. By providing FSM
optimization and control over placement, our design en-
vironment enables the maximization of performance.

1 Introduction

Reconfiguration models used in configurable comput-
ing can be classified into compile-time reconfiguration
(CTR) and run-time reconfiguration (RTR) [6]. In
CTR, the hardware compilation and the reconfigura-
tion are done at compile-time. At run-time, the circuit
loaded onto a reconfigurable resource is executed for
many sets of input data. In RTR, the configuration
of the reconfigurable resource is changed while the ap-
plication is running. Here, the reconfiguration time
becomes part of the application’s run-time and has to
be minimized.

Recently, another model of reconfigurable comput-
ing emerged: instance-specific reconfiguration. In this
model, new hardware is generated for every problem
instance, i.e., every set of input data, of a particular
algorithm. In such a case, not only the reconfiguration
time but also the hardware compilation time becomes

part of the overall run-time. This is denoted as dy-
namic circuit generation.

Applications that can make use of the instance-
specific reconfiguration model must show two charac-
teristics, lots of fine-grained parallelism dependent on
the actual input data and long run-times in software.
The first characteristic ensures that fine-grained recon-
figurable resources, such as Field Programmable Gate
Arrays (FPGAS), achieve high speed-ups compared to
microprocessors. The second characteristic is required
to hide the hardware compilation overhead. The driv-
ing application for this reconfiguration model is the ac-
celeration of Boolean satisfiability problems [13] [9] [2]
[10] [12].

For this paper, we required a design environment
that supports dynamic reconfiguration. Our approach
combines PAM-Blox, a structural object-oriented de-
sign tool that gives control over placement, with com-
mercial FSM synthesis and optimization. The concept
of a hardware object demonstrated with PAM-Blox was
introduced in [8] and has proven itself to be highly com-
petitive with commercial tools such as Synopsys FPGA
Express II. Circuits for solving Boolean satisfiability
problems consist of some datapath blocks and many co-
operating finite state machines. In terms of hardware
area, the FSMs are dominating. A design environment
that supports dynamic reconfiguration must therefore
not only provide a method to re-use highly optimized
datapath components, but also a method of specifying
complex FSMs, both with control over placement.

In the remaining part of this section, we define the
Boolean satisfiability problem, discuss the general de-
sign tool flow for reconfigurable satisfiability solvers,
and introduce the PAM-Blox design environment. In
Section 2, we describe our new environment that com-
bines FSMs with PAM-Blox. Section 3 presents an ex-
ample of a hardware architecture to solve satisfiability
problems in reconfigurable hardware. First experimen-
tal results achieved are discussed in Section 4. Section
5 concludes this paper.

1.1 The Boolean Satisfiability Problem

The Boolean satisfiability problem (SAT) is a funda-
mental problem in mathematical logic and computing
theory with many practical applications in areas such
as computer-aided design of digital systems, automated
reasoning, and machine vision. In computer-aided de-
sign, tools for synthesis, optimization, verification, tim-
ing analysis and test pattern generation use variants of
SAT solvers as core algorithms. The SAT problem is
commonly defined as follows [5]:

Definition 1 Given i) a set of n Boolean variables
Z1,%2,---,%n, i) a set of literals, where a literal is a
variable x; or the negation of a wvariable T;, and iii)
a set of m distinct clauses C1,Cy,...,Cy,, where each
clause consists of literals combined by the logical or con-
nective V, determine, whether there exists an assign-
ment of truth values to the variables that makes the
Congunctive Normal Form (CNF) CyANCy A...ACp,
true, where A denotes the logical and connective.

An example for a SAT problem with 4 variables and
3 clauses is (21 VZ2)A(21VE3Vx4)A(22VE4). The vector
(z1,%2,23,24) = (1,1,0,0) is one possible solution to
this SAT problem.

Since the general SAT problem is NP-complete, ex-
act methods to solve SAT show an exponential worst-
case run-time complexity. This limits the applicability
of exact SAT solvers in many areas.

The SAT problem is a discrete, constrained decision
problem [5]. A straightforward but inefficient proce-
dure to solve it exactly is to enumerate all possible
truth value assignments and check if one satisfies the
CNF. Many of the improved techniques that have been
proposed to solve SAT problems eliminate one variable
from the CNF at a time. There are two basic meth-
ods: splitting and resolution. Resolution was imple-
mented in the original Davis-Putnam (DP) algorithm
[4]. Splitting was used first in Loveland’s modification
to DP, the DPL algorithm [3]. In splitting, a variable
is selected from the CNF and two sub-CNFs are gen-
erated by setting the variable to 0 and 1, respectively.
The iterative application of splitting generates a search
tree; a leaf of the tree denotes a full assignment of val-
ues to variables. Most practical SAT solvers use the
splitting technique and combine it with backtracking.
Backtracking searches the search tree in a depth-first
order and thus avoids excessive memory requirements.

Existing software SAT solvers use a wide variety of
backtracking methods and strategies for decision, de-
duction, and diagnosis. A very sophisticated example
is the GRASP algorithm [11], which is also used as ref-
erence in our work. The powerful strategies that are

SAT problem

l

generator

logic description

FPGA compilation

FPGA configuration

backend

|

result

Figure 1: Steps for solving SAT problems with
instance-specific hardware accelerators.

implemented by sophisticated SAT solvers reduce the
number of variable assignments required to find a so-
lution or to prove that there is no solution. However,
these strategies can be computationally very expensive.

Recently, reconfigurable hardware architectures have
been proposed to solve hard instances of the SAT prob-
lem [13] [14] [9] [2] [10] [12]. For each instance of
a SAT problem, i.e., for each CNF, new hardware is
generated on-the-fly reflecting the particular structure
of the CNF. These instance-specific architectures rely
on fine-grained computing structures as provided by
FPGA technology.

1.2 Design Tool Flow for Reconfigurable SAT
solvers

A design tool flow for instance-specific computation of
SAT problems includes basically three steps, as shown
in Figure 1. The first step is a generator program
that takes a SAT problem as input and generates the
instance-specific logic description of this problem. The
next step, the FPGA compilation, maps, places, and
routes this description for a specific target FPGA fam-
ily. The result of this step is a configuration bitstream.
The third step, the backend, configures the reconfig-
urable resource, starts the computation, waits for com-
pletion, and extracts the results.

The two major issues in the design tool flow for re-
configurable SAT solvers are: fast circuit generation
and the use of predesigned and optimized FSMs. De-
pending on the complexity of the SAT problem, cir-
cuit generation can take by order of magnitude longer

application design in C++
PamBlox PaModules PamFSM
} C++ libraries
DIGITAL PamDC
. J

C++ compiler

design
executable .~

run executable

design in
Xilinx netlist format
(placed)

a) overall design tool flow

generate FSM
in Verilog
generate
datapath netlist
8 Verilog
technology
mapping - synthesis
Synopsys FPGA | timization
Express Il | _technology mapping

Xilinx netlist format
(unplaced)

placement

b) run executable

Figure 2: a: Tool flow for designing and placing finite state machines within the PAM-Blox environment. b:
Running the C++ executable creates a behavioral Verilog description of the state machine which is optimized by
Synopsys FPGA Express II and merged with the PAM-Blox design on the Xilinx netlist level.

than the execution of the hardware algorithm itself.
FSM optimization is crucial because as simulations
have shown, for most SAT problems the FSMs are the
limiting factor in terms of hardware complexity.

Zhong et al. [14] presented a tool flow for a recon-
figurable SAT solver where the instance-specific logic
is described in VHDL. This description is then par-
titioned and mapped onto an array of Xilinx XC4000
series FPGAs by an IKOS logic emulation system. The
advantage of this approach is that large FPGA systems
can be targeted. The drawback is that the utilization
of the FPGAs and the achieved clock frequencies are
usually rather low.

A different approach is proposed by Rashid et al.
[10]. SAT-specific CAD tools for synthesis, partition-
ing, placement, and routing are being developed for an
open FPGA architecture, namely the Xilinx XC6200
family. The proposed design tool can generate either a
logic description in VHDL, requiring commercial tools
for FPGA compilation, or directly a configuration bit-
stream for the Xilinx XC6216.

The design tool flow from Suyama et al. [12] gen-
erates a logic description in the hardware description
language SFL. This description is synthesized by the
PARTHENON CAD tools and mapped onto a ZyCAD
system, which consists of Xilinx XC4000.

In our approach, we generate a logic description in
form of a Xilinx FPGA netlist and use the commer-
cial Xilinx design implementation tools for mapping,
placement, and routing. We address the issue of fast
circuit generation by controlling the placement of the
FSMs with the object-oriented hardware design envi-
ronment PAM-Blox/PamDC. FSMs are optimized with
a commercial synthesis and optimization tool such as
Synopsys FPGA Express II.

1.3 PAM-Blox:
Design

Object-Oriented Structural

PAM stands for Programmable Active Memories de-
scribed in [7]. PamDC was developed for the PAM
project to offer circuit generation on the register-
transfer-level (RTL) in C++. For datapaths, hand de-

cruiseOn

cruiseOff

= cruiseOff
cruism
cruiseStop @

S

cruiseResume

cruiseSet

Figure 3: CRUISEL, a finite state machine for cruise
control in a car.

signs are typically more efficient than compiled behav-
ioral descriptions. In order to exploit the efficiency of
hand design while simplifying the design process, PAM-
Blox, introduced in [8], offer a bottom up approach to
compilation for custom computing machines. By us-
ing a powerful and highly optimized parameterizable
library of hardware object generators, PAM-Blox, we
add levels of abstraction that preserve optimal area and
performance while simplifying the design process. The
first level, PamBlox, consists of parameterizable sim-
ple elements such as counters and adders. Automatic
placement of carry chains and flexible shapes are sup-
ported. PaModules are more complex elements pos-
sibly instantiating PamBlox. PaModules have fixed
shapes and are usually optimized for a specific data-
width. Examples for PaModules are multipliers, Coor-
dinate Rotations (CORDICs), and special arithmetic
units for encryption.

PAM-Blox simplifies the design of datapaths for FP-
GAs by implementing an object-oriented hierarchy in
PamDC/C++. With PAM-Blox, hardware designers
can benefit from all the advantages of object-oriented
system design that the software industry has learned to
cherish during the last decade. Efficient use of function
overloading, virtual functions, and templates makes
PAM-Blox a very powerful and yet simple to use design
environment.

By implementing PAM-Blox together with the ac-
tual design within a C++ hierarchy, we simplify the
task of adapting library modules to the specific needs
of the application. Therefore PAM-Blox circuit gener-
ators are easily scalable and allow FPGA designers to
share and reuse pieces of designs by writing new Pam-
Blox and PaModules.

2 Combining PAM-Blox with FSM
Synthesis

PAM-Blox has proven itself to be very useful for de-
signing high performance data intensive applications.

FSM *myFSM = new FSM("cruise");

myFSM->set_output ("off0ut");
myFSM->set_output ("readyOut");
myFSM->set_output ("setOut");
myFSM->set_output ("waitQut");

myFSM->set_input ("cruiseOn");
myFSM->set_input("cruise0ff");
myFSM->set_input("cruiseSet");

myFSM->set_state("0FF", "0001");
myFSM->set_state ("READY", "0010");
myFSM->set_state("SET", "0100");
myFSM->set_state("WAIT", "1000");
myFSM->set_init_state("OFF");

myFSM->set_trans("0FF", "READY", "cruise(n");
myFSM->set_trans("READY", "SET", "cruiseSet");
myFSM->set_trans("SET", "WAIT", ‘“cruiseStop");
myFSM->set_trans("WAIT", "“SET", "cruiseResume");

myFSM->set_output_loc("offOut", dx, dy0, FFX);
myFSM->set_output_loc("readyOut", dx, dy0, FFY);
myFSM->set_output_loc("setOut", dx, dyl, FFX);
myFSM->set_output_loc("waitOut", dx, dyl, FFY);

myFSM->generate_instance("cruisel"”, x, y);

Figure 4: Code fragment showing the specification of
the state machine CRUISE1 in C++. The state ma-
chine will be implemented as Moore automaton. Thus,
the state encoding corresponds to the specified order of
outputs.

However, the tediousness of creating control units re-
mained a major drawback of the object-interface.

Applications such as Boolean satisfiability require
optimized state machines. In order to keep a unified
specification of the circuit in C++ and still get max-
imal optimization of the state machine, we integrate
the PAM-Blox design flow with Synopsys FPGA Ex-
press II. The tool flow is shown in Figure 2. The
application circuit is described in C++, using the li-
braries PamBlox, PaModules, and PamFSM for spec-
ifying state machines. Running the design executable
creates behavioral Verilog for the state machines. Syn-
opsys FPGA Express II is called for synthesis, opti-
mization, and technology mapping. The structural
elements of the FSMs and the PAM-Blox design are
merged on the Xilinx netlist level, possibly augmented
with placement directives.

Figure 3 shows a simple state machine controlling the
cruise control of a car. The PamFSM specification is
presented in Figure 4. State machines can be instanti-
ated multiple times and placed anywhere on the FPGA.
Hand placement or clever automatic placement can sig-
nificantly improve the performance of FPGA designs.

\ ‘ host interface

global controller

X, 2
#1

#2

#3

CNF 2
datapath

#n

Figure 5: Block diagram for the basic SAT architec-
ture. It consists of an array of FSMs (#1, ... ,#n), a
datapath, and a global controller. The variables x; and
the CNF are modeled in 3-valued logic.

In addition, placing the state machines is a simple and
convenient way to determine the FPGA read-back po-
sitions of the state variables. Placement of state ma-
chines is a key feature in our environment, as it is not
supported by conventional CAD tools such as Synopsys
FPGA Express.

3 Reconfigurable Architectures for

SAT

The block diagram of the basic architecture for solving
SAT in hardware is shown in Figure 5. The circuit con-
sists of three parts: i) an array of FSMs, ii) a datapath,
and ii) a global controller.

Each variable of the CNF corresponds to one FSM.
The FSMs are connected in a one-dimensional array;
each FSM can activate its two neighboring FSMs at
the top and at the bottom. The architecture of the
FSM is algorithm-specific; i.e. for a specific SAT algo-
rithm, all the FSMs are identical. The datapath is a
combinational circuit that takes the variables as input
and computes outputs that are fed back to the FSMs.

Figure 6: State diagram for an FSM of the architec-
ture CE. The inputs are FT (from top) and FB (from
bottom) that activate the FSM, and the 3-valued CNF.
The output signals displayed inside the states are the
variable value, and the signals TT (to top) and TB (to
bottom) that activate the previous and next FSM.

The global controller starts the computation and han-
dles I/O communication.

The variables of the CNF are modeled in 3-valued
logic. A variable can take on the values {0, 1, X }, where
X denotes an unassigned variable. The datapath com-
putes the 3-valued result of the CNF expression. Ini-
tially, all variables are unassigned which also leads to
CNF value X, and the global controller activates the
top-most FSM. The state diagram for an FSM is shown
in Figure 6. An activated FSM assigns 0 to its variable
and checks the resulting CNF value. If the CNF value
is 1, the partial assignment already satisfied the CNF
and the computation stops. If the CNF is 0, the par-
tial assignment made the CNF unsatisfiable. In this
case, the FSM assigns the complementary value to its
variable. If the CNF value is X, the partial assignment
did neither satisfy the CNF nor did it make the CNF
unsatisfiable. In this case, the FSM activates the next
FSM at the bottom. If both value assignments have
been tried, the FSM relaxes its variable by assigning
X to it, and activates the previous FSM at the top.
When the first FSM relaxes its variable and activates
the global controller, the SAT problem is proven to be
unsatisfiable. By this procedure, the array of intercon-
nected FSMs implements chronological backtracking.

Most reconfigurable architectures that have been
proposed for solving SAT in CNF form share the ba-
sic block diagram shown in Figure 5. They differ in
the modeling of the variables (2-valued, 3-valued, or 4-
valued logic) and in the used deduction strategy, which
is reflected in the actual implementation of the datap-
ath and the FSM. For all architectures, the datapath

| benchmark | variables | clauses |t [s]]

hole6 42 133 0.31
hole7 56 204 4.56
hole8 72 297 54.98
hole9 90 415 627.52
holel0 110 562 7616.40

Table 1: hole benchmarks from the DIMACS bench-
mark suite. The software SAT solver GRASP was
executed with parameters +bD +dDLIS on a Pentium-
I1/300MHz/128MB RAM PC platform running Linux.

and the number of FSMs is instance-specific. However,
the global controller and the single FSM do not change
with the CNF.

Architectures that implement more powerful deduc-
tions strategies also have more complex datapaths and
FSMs. The architecture presented here offers the least
powerful deduction strategy and has the smallest hard-
ware requirements. As discussed in [9], this basic archi-
tecture can be a viable option for smaller SAT problems
or in cases with resource limitations. In this paper, we
restrict our discussion to this basic SAT architecture,
as the more complex alternatives lead to the same is-
sues.

4 Experimental Results

In this section, we report experimental results for the
class of benchmarks hole taken from the DIMACS sat-
isfiability benchmarks suite [1]. The hole benchmarks
are instantiations of the pigeon hole problem, formu-
lated as a SAT problem in CNF. This benchmark class
is well-suited for evaluation, as all the examples are un-
satisfiable and hard to solve, i.e., software SAT solvers
have long run-times. Table 1 lists the benchmark ex-
amples with their problem size, given by the numbers of
variables and clauses, and the run-time of the software
SAT solver GRASP [11] on a PC platform.

We compare the performance of the software imple-
mentation with the performance on our reconfigurable
computing system. Our hardware prototype is imple-
mented on the PC platform, this time running Win-
dows NT 4.0. As reconfigurable resource we use a Dig-
ital PCI Pamette board, equipped with 4 FPGAs of
the type Xilinx XC4020.

We define the raw speed-up Sprqw 0f the reconfig-
urable SAT solver as tsy/thw, the run-time ratio of
software and hardware SAT solvers. The overall run-
time for computing a SAT problem in reconfigurable
hardware consists of the hardware compilation time,

tcomp, the time for configuring the FPGA, t.onfig, the
actual hardware execution time, tp,,, and the time for
reading back and extracting the result, t,eqq-

toverall = tcomp + tconfig + thw + tTead (1)

The overall speed-up Sjoperquz is then given by
tsw/toverall .

Table 2 presents the experimental results for the hole
benchmarks. With our design tool flow, the time for
FPGA configuration and read-back can be neglected
compared to the hardware compilation time, which it-
self is strongly dominated by the Xilinx design imple-
mentation tools.

The examples hole6 to holed were mapped onto
one Xilinx XC4020. For hole10, an FPGA of type
X(C4025/XC4028 is necessary. As we know the num-
ber of clock cycles for hole 10 from a simulation of
the SAT solver and the maximum clock frequency from
running the FPGA compilation tools, we were able to
determine exactly the speed-ups for this benchmark.
The hardware cost in Table 2 suggests that holef0 can
be mapped in one XC4020. However, our placement
strategy tries to minimize the distances between the
FSMs and the datapath logic blocks. This prevents us
from placing too many FSMs in an FPGA. With this
strategy, we never ran into routing problems for the
datapath logic and we were able to achieve a rather
high performance for these irregular designs.

The hardware and software execution times are
shown in Figure 7. The raw execution times of hard-
ware and software SAT solvers increase more rapidly
with the problem size than the hardware compilation
time. This leads to a cross-over point in the over-
all speed-up around hole9. For this benchmark, SAT
solvers in instance-specific hardware and software have
similar overall run-times. For hole10 we achieve a
speed-up of 7.408, which reduces the run-time from
more than 2 hours in software to about 17 minutes
in hardware.

Table 2 shows that the raw speed-up Siqu is de-
creasing with the problem size. This is for two rea-
sons. First, as simulations [9] have shown, a slightly
decreasing speed-up seems to be an artifact from apply-
ing the presented deduction strategy to this particular
SAT problem class. Second, larger problems result in
more complex circuits which lead to longer clock cycles
times.

5 Conclusion and Future Work

Although hardware compilation for current FPGAs
takes minutes to hours, instance-specific SAT solvers
are promising for hard SAT problems, i.e., problems

benchmark tsw | hardware cost | Tmin thw | tcomp | toverall Sraw | Soverall
[s] [CLBs] [ns] [s] | [s] [s]

hole6 0.31 230 15.4 0.005 | 103 103.01 | 62.000 | 0.003

hole7 4.56 314 16.2 0.062 | 134 134.06 | 73.548 | 0.034

hole8 54.98 412 19.0 0.911 | 249 249.91 | 60.351 | 0.220

hole9 627.52 522 23.4 16.910 | 439 455.91 | 37.109 | 1.376

holel0 7616.40 658 37.5 | 431.110 | 597 | 1028.11 | 17.667 | 7.408

Table 2: Results for running the hole benchmarks. For each benchmark, the software run-time t,,,, the hardware
cost in configurable logic blocks (CLBs), the minimum clock period 7., the hardware execution time tp,,, the
hardware compilation time #.omp, the overall run-time for the reconfigurable system t,,erqu, and the raw and overall

speed-up are shown.

where software solvers show very long run-times. The
sources of the potential speed-ups are the deduction
steps that show large amounts of fine-grain parallelism.
This makes FPGAs with their fine-grained logic blocks
an optimal target for instance-specific hardware accel-
erators for SAT problems.

Our design environment that combines PAM-
Blox/PamDC with commercial FSM synthesis and op-
timization has proven itself to be very convenient for
dynamic hardware generation. The entire application,
including the code generation for the instance-specific
circuits as well as the run-time functions for download-
ing bitstreams and reading back results, can be handled
in a single representation in C++. This greatly sim-
plifies the construction and usage of instance-specific
systems.

The toolflow is still very clumsy as it requires us to
run Xilinx place-and-route tools. A specialized place-
and-route tool together with the availability of larger
FPGAs would make the reconfigurable solution even
more competitive.

In the future, we will extend the SAT architectures
by assigning cost values to the variables. This will allow
to solve the important class of minimum-cost problems.
We plan to apply these reconfigurable SAT solvers to
real-world problems in CAD.

In the current implementation, we use only one
FPGA of the Pamette board. To employ arrays of FP-
GAs, we are investigating different partitioning tech-
niques. This includes mapping large SAT circuits onto
several FPGAs and splitting large SAT problems into
subproblems that can be run independently.

In addition, we consider to extend PamFSM to more
general models, including Mealy machines and deriva-
tives.

AK[S] — 2K [9 5K [9] 1K [9] 10K [9]

- = | 0

SW HwW SW HW SW HW SW HW SW HW
hole 6 hole 7 hole 8 hole 9 hole 10

Figure 7: Software and hardware execution times in
seconds, with scaled y-axes for the different bench-
marks. The right bars are the hardware compilation
times, including hardware execution time shown as
black area. Only hole 10 spends a significant amount
of time executing in hardware.

6 Acknowledgment

We would like to thank Prof. De Micheli and Prof.
Flynn at the Computer Systems Laboratory, Stanford
University for their support and constant encourage-
ment that led to this work. Oskar Mencer is supported
by DARPA contract No. DABT63-96-C-0106. Marco
Platzner was partially supported by the Austrian Na-
tional Science Foundation FWF under grant number
J01412-MAT.

References

[1] DIMACS satsifiability benchmark suite, avail-
able at ftp://dimacs.rutgers.edu in the directory
/pub/challenge/sat/benchmarks/cnf/.

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

Miron Abramovici and Daniel Saab. Satisfiabil-
ity on Reconfigurable Hardware. In International
Workshop on Field-Programmable Logic and Ap-
plications (FPL), pages 448-456, 1997.

M. Davis, G. Logemann, and D. Loveland. A ma-
chine program for theorem proving. Communica-
tions of the ACM, (5):394-397, 1962.

M. Davis and H. Putnam. A computing procedure
for quantification theory. Journal of the ACM,
(7):201-215, 1960.

Jun Gu, Paul W. Purdom, John Franco, and Ben-
jamin W. Wah. Algorithms for the Satisfiability
(SAT) Problem: A Survey. DIMACS Series in
Discrete Mathematics and Theoretical Computer
Science, 35:19-151, 1997.

Brad L. Hutchings and Michael J. Wirthlin.
Implementation Approaches for Reconfigurable
Logic Applications. In International Workshop
on Field-Programmable Logic and Applications
(FPL), 1995.

Oskar Mencer, Martin Morf, and Michael J. Flynn.
PAM-Blox: High Performance FPGA Design for
Adaptive Computing. In TEEFE Symposium on FP-
GAs for Custom Computing Machines, April 1998.

Marco Platzner and Giovanni De Micheli. Ac-
celeration of Satisfiability Algorithms by Recon-
figurable Hardware. In International Workshop
on Field-Programmable Logic and Applications
(FPL), pages 69-78, 1998.

Azra Rashid, Jason Leonard, and William
H. Mangione-Smith. Dynamic Circuit Generation
for Solving Specific Problem Instances of Boolean
Satisfiability. In IEEE Symposium on FPGAs for
Custom Computing Machines, April 1998.

J. Silva and K. Sakallah. GRASP - A New Search
Algorithm for Satisfiability. In IEEE ACM Inter-
national Conference on CAD ’96, pages 220-227,
November 1996.

Takayuki Suyama, Makoto Yokoo, and Hiroshi
Sawada. Solving Satisfiability Problems on FP-
GAs. In International Workshop on Field-
Programmable Logic and Applications (FPL),
pages 136-145, 1996.

Jean E. Vuillemin, Patrice Bertin, Didier Roncin,
Mark Shand, Herve H. Touati, and Boucard. Pro-
grammable Active Memories: Reconfigurable Sys-
tems Come of Age. In IEEE Transactions on
VLSI, March 1996.

[13]

[14]

Peixin Zhong, Margaret Martonosi, Pranav Ashar,
and Sharad Malik. Accelerating Boolean Satisfia-
bility with Configurable Hardware. In IEEE Sym-
posium on FPGAs for Custom Computing Ma-
chines, April 1998.

Peixin Zhong, Margaret Martonosi, Pranav Ashar,
and Sharad Malik. Solving Boolean Satisfiability
with Dynamic Hardware Configurations. In Inter-
national Workshop on Field-Programmable Logic
and Applications (FPL), pages 326-335, 1998.

