

ASC: A Stream Compiler for
Computing with FPGASs

Oskar Mencer

Abstract— ASC, A Stream Compiler for computing with Field
Programmable Gate Arrays (FPGAS) emerges from our ambition
to bridge the hardware design productivity gap where the number
of available transistors grows more rapidly than the productivity
of VLSI and FPGA CAD tools. ASC attacks this problem
with a software-like programming interface to hardware design
(FPGAs) while at the same time keeping the performance of
hand-designed circuits. ASC improves productivity by letting the
programmer optimize the implementation on the algorithm-level,
the architecture-level, the arithmetic-level and the gate-level, all
within the same C++ program.

We apply ASC’s increased productivity to hardware accelera-
tion of a wide range of applications. Traditionally hardware ac-
celerators are tediously hand-crafted to achieve top performance.
ASC simplifies design space exploration of hardware accelerators
by transforming the hardware design task into a software design
process, using only ’gcc’ and *make’ to obtain a hardware netlist.
Our experience suggests that hardware design productivity and
ease-of-use are close to pure software development.

We present results and case studies with optimizations (a)
on the gate-level: Kasumi and IDEA encryption, (b) on the
arithmetic level: redundant addition and multiplication, function
evaluation for 2D rotation, and (c) on the architecture level:
Wavelet and LZ-like compression.

I. INTRODUCTION

Traditionally, computer systems consist of a microprocessor
and an additional set of application or domain specific devices,
or hardware accelerators, that accelerate certain functionality.
Examples are: floating point co-processors in early micro-
processor systems, 2D and 3D graphics accelerator cards,
and combinations of software and hardware accelerators in
embedded systems. However, all these hardware accelerators
are tediously hand-crafted to achieve top performance. If we
consider an FPGA with 10M customizable gates, which could
be reconfigured every 100ms, we could generate circuits of up
to 100M gates per second to keep the chip busy. Therefore,
the more we can increase the productivity of our hardware
design system, the better use we can make of reconfigurable
technology.

The ideal programming solution needs to automate the
generation of hardware and at the same time achieve top
performance of hand designed circuits. The ASC (A Stream
Compiler) is a general-purpose hardware generation system
with special support for generating stream architectures. ASC
achieves top performance with low programming effort by
providing access on all three levels of abstraction. Thus, ASC
bridges the hardware design gap between the ever increasing

The author is with the Department of Computing, Imperia College, 180
Queens Gate, SW7 2BZ, London, UK, and Maxeler Technologies, Inc. Email:
o.mencer@imperial.ac.uk

CPU

o

—
Stream

Hardware
Accelerators

Memory

Fig. 1. A computer system with hardware accelerators such as Stream
Architectures.

number of transistors on a chip and the much slower in-
crease of productivity delivered by hardware design tools and
methodologies. Previous publications have covered the spirit
of our approach[20]. The key points about ASC discussed in
this paper are:

o programming interface, hardware variable types and at-
tributes on various levels of abstraction (section Il1).

« details of custom stream architecture generation, in par-
ticular the datapath part of the design (section V).

« details of module generation/”instruction set” for hard-
ware accelerators on FPGAs (section V).

« evaluation and test using a number of benchmarks from
small to large sizes such as encryption, compression, and
elementary arithmetic (section 1X).

Various aspects of ASC are published in conference
papers[16][18]. This paper selectively combines and extends
previous publications, adding the test methodology employed
to ASC and ASC user programs, and an extended comparison
to related work.

Figure 1 shows the general structure of a computer system
with multiple application specific accelerators. The accelerator
can be located on-chip with the processor such as today’s
floating point units, the Berkeley Garp Processor [7], or the
Xilinx Virtex Pro FPGAs (Field Programmable Gate Arrays)
with on-chip PowerPC processors [25]. Also, such accelerators
can be combined with main memory [14] or on the peripheral
bus[17][34]. Furthermore accelerators can be implemented in
custom VLSI devices, or as FPGA configurations. In either
case, there are two memory systems: (1) a compile-time mem-
ory system on or around the accelerator, i.e. memories inside
the FPGA or directly attached to it, and (2) the processors
memory system which is managed at run-time.

On the FPGA side, recent advances in FPGA technology
enable the development of many hardware accelerators cus-
tomized for specific applications and for particular input data-
sets [19]. These accelerators can be generated and managed
at compile time and at run time.

Building efficient hardware accelerators for a particular

application, however, consists of many challenging tasks. First,
the programmer can explore four degrees of freedom: the
system architecture, the micro architecture, the functional
units, and the level of programmability or granularity of
configuration. This exploration of the structure of computation
results in the datapath part of the design. Second, a custom
accelerator requires a custom memory system, consisting of
on-chip registers, on-chip and off-chip SRAM memory, and
possibly DRAM memory. Third, run-time software routines
take care of sending the appropriate data back and forth
between the processor and the hardware accelerator. Fourth, a
control block for this datapath makes sure that the timing of
operations is correct. Fifth, an interface between the acceler-
ator and the processor maximizes the data transfer rate.

With ASC, the programmer can focus on the first three items
while ASC provides facilities to save the programmers time
and automate the fourth and fifth tasks.

Traditionally, low level hardware design tools focus on
creating one hardware design, while high level design tools
focus on design space exploration. By combining these activ-
ities, ASC simultaneously provides both—top performance and
easy design space exploration. ASC facilitates design space
exploration in two ways.

First, for the datapath, a single ASC description produces
multiple datapath implementations at the micro architecture
level with user-specified trade-offs. ASC also simplifies the
process of selecting and possibly custom designing the func-
tional units, by having descriptions on various levels of ab-
stractions captured in a uniform, object oriented style. The
object oriented implementation of ASC also enables us to
easily support several families of Xilinx FPGA devices such
as Xilinx 4000, Xilinx Virtex, Virtex 2, Virtex 4, Spartan 2,
and Spartan 3.

Second, ASC automates the generation of the control block,
the run-time routines, and CPU-FPGA interface based on
user specifications. Our purpose is to put the design space
exploration under user control. For example, by specifying
the algorithm in C++ syntax and ASC semantics, the user
also controls the memory system that ASC generates for the
application at hand.

Il. ASC - A STREAM COMPILER

On the top level, the user writes ASC code which closely
resembles C code. As a consequence, existing C/C++ software
can be seamlessly transformed to ASC. In order to express
and explore the design space of a hardware accelerator,
ASC code is parameterized to generate a large selection of
implementations. With these parameterizations the user trades
off, for example, silicon area for latency, throughput, and/or
precision.

In essence, ASC is a C++ library and, as such, can be
compiled by a standard C++ compiler. Thus, ASC code
is simply C++ which makes use of the ASC library in a
compliant manner. When compiled, ASC code becomes an
executable which either acts as a word level simulation, a bit-
level (RT-Level) simulation, or produces a circuit in the form
of a hardware netlist.

Programmer

v
Algorithm Analysis |
Y

A Stream Compiler (ASC)
Architecture Generation

PAM-Blox 11
Module Generation

Extensionsto PamDC

Compaq PamDC

v
FPGA Vendor tools
v

FPGA

Fig. 2. Leves of abstraction and structure of ASC. The largest box represents
a single C++ program.

The concepts of timing and architecture of the circuit map
to user-defined types, or ASC "hardware types”, implemented
as C++ classes and operators. These hardware operators map
to the module generation layer, PAM-Blox 1l [18]. PAM-
Blox Il is also implemented as a C++ class library, built on
top of PamDC [26]. which provides the engine for gate-level
simulation and supports output in EDIF netlist format.

For design space exploration ASC provides three intermedi-
ate representations, all in C++ syntax, to transform a software
implementation all the way down to the gate-level without
the use of a single line of VHDL, Verilog, or IP libraries.
Since each intermediate representation is a human readable
language, it is possible to reason about optimizations at each
of these levels and explore such optimizations within the ASC
framework.

Conceptually, ASC follows the underlying methodology of
the C programming language. The objective is to offer the
potential for maximal performance, and at the same time
provide a convenient language interface. On the hardware
side, implementations are not limited to any particular number
representation or any particular bitwidth. Custom hardware
provides a substrate for the programmer to tailor the number
representation to the specific application. In order to simplify
this process, the ASC description provides hardware types and
attributes which select specific number representations. Types
and attributes provide a connection, or hooks, between the
C++ description and the architecture generation layer. Figure 2
shows the levels of abstraction in ASC, described in more
detail below.

« Algorithm analysis layer. Common tasks associated with
this layer include: extracting compiler-controlled memory
management [38][39], pointer analysis for hardware syn-
thesis [37], loop transformations for hardware generation
[71[11][24], precision analysis[4][6][35], data-structure
transformations, and architecture selection. Currently, this
layer is handled manually, i.e. all algorithmic transforma-
tions are done by the programmer. ASC’s task is to make
this activity as easy as possible and support research on
hardware algorithm analysis and transformations.

« Architecture generation layer. ASC code serves as the
input to generate the hardware architecture. The ASC

type system provides the mapping of sequential code to
a custom hardware architecture.

o Module generation layer. In contrast to most other
hardware compiler efforts, ASC contains its own inte-
grated module generator libraries, PAM-Blox Il. PAM-
Blox Il offers the ASC user easy exploration of bit
level parallelism in conjunction with optimizations on the
various other levels of abstraction.

o Gate Level to Netlist layer. ASC does not utilize any
VHDL or Verilog and instead uses PamDC[26], a C++
library for gate-level FPGA design, simulation, and EDIF
netlist generation.

In order to meet the above requirements for module genera-
tion, we apply an object-oriented design methodology. Object
oriented software design is a well established technology in
the software world. The hardware world is slowly adopting
the advances made by object oriented languages such as
CIC++[45][46] and Java[47][48][49]. Object oriented design
leads to an efficient solution of the module generation problem
by focusing on the requirements for module generation men-
tioned above, such as scalability and code sharing. Inheritance
and hierarchical class structures match the requirements of
creating a large library of module generators with the logic
expressed as computation (methods) and module abstraction
parameters described as internal state (local variables) of the
generated object.

I1l. COMPARISON WITH OTHER APPROACHES

As for related tools and approaches, the commercial module
generator library available from Xilinx (CoreGen) contains
module generators which can be instantiated through a stand-
alone GUI. This approach is very well suited for the CAD
tool flow but less ideal for a programming environment. A
direct comparison of the performance values from the Xilinx
CoreGen data-sheets is complicated since the numbers in this
paper are real design results, while Xilinx values are maximal
(best-case) values.

Pebble[58] a language designed at Imperial College gen-
erates VHDL modules for a conventional CAD flow, but
requires the user to learn a new language syntax and use
the CAD design methodology. The Java Hardware Description
Language (JHDL)[49] is a similar effort to PAM-Blox/ASC.
Besides the arguments for and against Java, JHDL also inte-
grates module generation with the higher compilation layers.
Additionally, JHDL contains a runtime system, a port to Virtex
Il, and a large set of modules. Similarly, a commercial effort
by Celoxica[46] provides the “programming feel” to FPGA
design, mostly targeting embedded systems.

One difference of the approach proposed in this paper to
these related projects is the emphasis on handling different
number representations to tap into the full potential of the
FPGAs flexibility on the bit level.

The key benefit of architecture-level ASC as compared to
the C-to-FPGA approaches below is that ASC enables the
programmer to generate optimal circuits by programming on
the bit level, while at the same time making it easy to explore
a large design space and program non-critical parts of the
applications on a very high level.

The DEFACTO system [23] supports hardware design space
exploration based on parallelizing compiler technology and
high-level synthesis tools. A key element in DEFACTO is the
use of synthesis estimation techniques, possibly from behav-
ioral synthesis tools [22], to quantitatively evaluate alternative
designs for a loop nest computation. Other researchers have
also proposed estimation-based exploration methods, such as
the heuristics-based allocation based on communication cost
reduction [5]. In contrast, ASC operates on a lower level, and
could be targeted by a DEFACTO-style layer.

The Nimble framework [15] extracts loops from applica-
tions and generates a hardware accelerator for an FPGA.
Similar to DEFACTO, much of Nimble is actually above
the ASC level, as its main focus is on hardware/software
partitioning. As a consequence, Nimble is limited to high level
transformations, particularly those exploring architectural and
instruction level parallelism. The focus with ASC is to bring all
relevant levels of abstraction together in a coherent framework,
from bit level to algorithm level.

The Stream-C [11] and MARGE [12] systems compile C
code to multi-FPGA hardware accelerators. Similar to Nimble
above, Stream-C operates mostly at a higher level than ASC.
However, Stream-C is more hands-on than Nimble, requiring
user programming to explore the design space. Stream-C
follows the traditional behavioral synthesis approach of adding
annotations with compiler directives to the code in the form
of comments. Instead, ASC includes compiler “directives” into
the structure of the description within the type system, object
classes, function calls and macros, offering a richer scope of
expression to the programmer.

Celoxica [8] provides Handel-C, a C derivative language
for high level hardware design. Handel-C can be used to
design hardware accelerators for FPGAs at a similar level as
ASC. Like ASC, Handel-C provides the hardware designer
with control and opportunities for optimization. The main
difference from ASC is that the entire compiler code and
most module libraries are proprietary and thus off limits to the
user. Compared to Handel-C, (1) ASC is truly general purpose,
while Handel-C does not support the generation of arbitrary
circuits, (2) ASC uses a conventional gcc compiler which
makes ASC more compatible with standard C++ software
practices, and (3) Handel-C restricts the user by declaring a
clock cycle as one expression, i.e. the assignment operator
’=’ specifies a clock cycle—clearly making it difficult to create
large combinational circuits. ASC supports the generation of
arbitrary circuits, and (4) ASC enables the user to generate
many designs with a single source file and experimental
setup in makefiles. Meanwhile neither Handel-C nor, to our
knowledge, any other high-performance hardware design en-
vironment, support similar productivity in exploring the design
space.

Similar efforts also exist in the custom VLSI world. For
example, ShiftQ [2], the nonprogrammable accelerator (NPA)
for Program-In-Computer-Out [1] (PICO) systems, enables the
user to quickly find an optimum hardware solution.

Tensilica [41] provides a similar processor generation sys-
tem. Sherwood and Calder [21] provide higher level algorithms
to search through the processor design space for a PICO,

a 4
INfifOE 1
L

+

OUT fifo g
T b

Fig. 3. A simple ASC stream architecture (circuit on the hardware
accelerator/FPGA) with one input FIFO, one output FIFO and a possibly
pipelined datapath (in this case just one adder) absorbing inputs from the
input FIFO and producing outputs for the output FIFO.

or Tensilica-like system. Also, Dhodapkar and Smith [10]
show a dynamic method to manage different configurations
of a computer system. Even though their method is targeted
at configurable resources in a conventional processor, their
method could be applied to dynamically control configuration
options of domain and application specific compilers.

More generally, the idea of data-centric computation is the
key component in Dataflow [3] Systems. ASC uses similar
principles like static dataflow, but customizes the architecture
to a particular application, or application domain.

Why did we choose object oriented C++? C++ is one of the
richest object-oriented languages sometimes criticized for the
complexity arising from this richness of features. On the other
hand, once an optimal mapping of the problem space to C++
features is established, the software design and maintenance
task is greatly simplified.

Why did we choose C++ as opposed to Java[47][48][49]?
C++ offers operator overloading (not available in Java) which
is one of the most convenient features for adding application
specific semantics to a programming language. In our case
these semantics include boolean logic equations, and in fact
any expressions/operations on user-defined classes which spec-
ify hardware variable types. The second reason for using C++
is the Standard Template Library (STL)[50].

Why did we not choose SystemC[45]? SystemC is op-
timized for the hardware design process by mirroring the
philosophy of simulation languages such as VHDL or Verilog,
i.e. providing an additional layer on top of very large legacy
code. ASC provides the user with simultaneous access to all
levels of abstraction.

The major general advantage of ASC is the combination of
general-purpose, low level optimization with high level design
space exploration which, as far as we know, is not supported
by other currently available tools.

1V. ASC ARCHITECTURE GENERATION

ASC Architecture generation deals with mapping an ar-
chitectural description, in our case ASC code, to a structure
consisting of a custom datapath, control, and various interface
blocks. How does an ASC description deal with timing, paral-
lelization, and pipelining of an algorithm? The big picture is
that ASC contains an underlying parametrizable and moldable
architecture; the stream architecture. ASC extends the C++
type system using user-defined classes as hooks to map the

algorithm to a particular instance of a stream architecture.
In addition, for each piece of code, ASC can be directed
by the user to optimize either throughput, latency or area.
Since each of these three optimization modes can be selected
separately for each expression in the ASC code, the user
can optimize towards any objective such as area, latency,
or throughput. This means that ASC allows for optimization
towards a combination of all three optimizations.

A constructive way to visualize stream architectures, assum-
ing a simple feed-forward dataflow graph of a loop body, is
to imagine taking the dataflow graph, inserting flip-flops to
generate a pipeline, and streaming data in at one end while
letting the data flow out on the other end of the pipeline.

The following example shows C code for vector increment,
ASC code, and the resulting stream architecture:

in C (Software):

int i,a[SlZE], b[Sl ZE];
for (i=0; i<SIZE;, i++){
b[i] = a[i] + 1;

}

The C loop above is expressed in ASC by declaring an input
stream (a), output stream (b), and, by specifying the expression
whose operator defines the function (add) to compute the
elements of the output stream, given the input stream.

ASC code:

STREAM START;
/! variables and bitw dths
HWnt a(IN, 32),b(QUT, 32);
STREAM _LQOOP(S| ZE) ;
STREAM OPTI M ZE = THROUGHPUT;
b =a+ 1;
STREAM END;

ASC code is correct C++ with user-defined types, operators,
and a library of macros and function calls. ASC code is there-
fore compiled with gcc like any other C++ program, libASC
is linked, and running the executable produces an EDIF
netlist or a gate level simulation of the circuit. Consequently,
programming with ASC is similar to programming in C++
and thus we have a true software-like hardware development
process.

For the simple example above, the seven lines of ASC code
run on an FPGA by typing “make run” in the command line.
The ASC makefile system automatically compiles the code,
generates the EDIF netlist, runs Xilinx place-and-route tools,
gets the timing information, sets the clock on the FPGA card,
downloads the bitstream, and runs the program on the FPGA,
displaying the result. By typing “make sim” the program above
is executed in a gate-level simulation in C++.

Note that the “for” loop in C code translates to a declaration
of STREAM LOOP in ASC code, the variable type changes
to HW nt , and the variables get “architectural attributes” | N
and QUT. From a vector processor perspective, streams are a
generalization of vectors. We express algorithms in terms of
streams (or arrays in C). ASC then generates a stream archi-
tecture based on STREAM OPTI M ZE for each expression.

Currently supported optimization values are THROUGHPUT,
LATENCY, and AREA.

o THROUGHPUT: (default) In throughput mode, all flip
flops are being used and the resulting circuit is balanced
(scheduled) by using FIFO buffers in-between the arith-
metic units.

o LATENCY: In latency mode, no flip flops are being
inserted and as a consequence the resulting circuit is
purely combinational.

o AREA: In area mode, ASC uses sequential arithmetic
units, e.g. for multiplication ASC selects an add-
accumulate unit.

At runtime, a C program with modified ASC runtime calls
streams data through the hardware to compute the results. An
example for an ASC runtime call could replace the “for” loop
(STREAM_LOOP) above by a call to the ASC runtime library:

ascrt_stream.int(a, b, Sl ZE, Sl ZE) ;

This call sends Sl ZE data items from buffer a in main
memory to the generated circuits, either in a gate level
simulation mode or real hardware, and receives S| ZE result
items into buffer b. At the hardware accelerator, the input data
enters a FIFO buffer and flows through the stream architecture
until it arrives at the output FIFO buffer. The above ASC code
results in the implementation shown in figure 3.

In general, an ASC architecture consists of a multi-input,
multi-output data flow graph. Each “wave” of input values
flows through this implementation of the dataflow graph. An
implementation of a data flow graph involves delay FIFO
buffers, which balance the movement of the various operands
through the compute engine. The delay inserted by each buffer
is set by the scheduling phase of ASC.

A. ASC Scheduling and Control Block Generation

ASC generates statically scheduled architectures. While
the ASC user focuses attention on generating the datapath,
ASC automatically schedules all computations and generates
a custom control block for the particular pipeline. This control
logic sets the enable signals for all flip flops and controls all
FIFO buffers and memories to latch the correct values at the
right time.

From the scheduler’s perspective a stream architecture is
a graph where the nodes have a particular latency (pipeline
depth) and a minimal number of clock cycles between suc-
cessive inputs. This minimal number of clock cycles between
successive inputs is the latency of sequential units. ASC sched-
ules the operations of the dataflow graph resulting from the
C++ code by inserting delay FIFO buffers between producers
and consumers of data values, to ensure that the operands of
each operation arrive together. As long as there are no cycles in
the dataflow graph, the resulting implementation can be fully
pipelined regardless of local data dependencies, and runs at
a throughput equal to the data rate, since it can absorb one
set of input values at each clock cycle. This pipelined mode
of operation represents computation which is parallelized in
time (as opposed to parallelization in space which would mean
replicating stream architectures).

V. THE ASC DATAPATH

This section describes the facilities that ASC provides for
design space exploration of the datapath and the custom
memory system blocks of the stream architecture.

A. Hardware Types and Attributes

ASC uses custom types and attributes as a means of
conveying timing and structure to the compiler. Each hardware
type denotes a family of related representations. For exam-
ple, HW nt denotes the integer family of representations. In
addition, the user specifies attributes to select more specific
details, such as sign representation (e.g. two’s complement
or sign magnitude), bit width, or memory type (e.g. register,
temporary, stream input, or FPGA internal memory block).
These attributes are parameters stored within the state of the
hardware variable class. Available data types are: HW nt,
HW i x, and HW | oat . For example, the following code uses
fixed point variables to compute a running average:

STREAM_START;

/[l var x ->
HWix x(IN, 16, 8, UNSI GNED);

HWix y(TMP, 64, 8, UNSI GNED);

HW i x sum(MAPPED_REGQ STER, 64, 8, UNSI GNED) ;
HW i x av(MAPPED REG STER, 24, 12, UNSI GNED) ;
HWnt | (TMP);

STREAM_LOOP(1000000)
STREAM _OPTI M ZE=LATENCY;
Loopl ndex(1);

y=x+sum
sume=y;
av=sumn | ;

STREAM_END;

Notice that HWint/HWfix are streams of numbers rather
than single data items. Streams are like vectors with flexible
length. The length of a stream can be varied at runtime. ASC
stream variables reflect the data streams that come through a
port/bus on a chip.

The attribute MAPPED REG STER maps the ASC variable
into the host processors memory space making it read/writable
at runtime.

B. ASC “Instructions”: Module Generator Libraries

The ASC module generation layer, PAM-Blox 1l [18],
consists of more than 170 integer arithmetic module generators
for elementary operations in about 10,000 lines of C++ code,
resulting in an average of fewer than 60 lines of code per
module generator.

ASC arithmetic unit generators include flip-flops, and thus
timing, in the generated unit. For all operations the user
chooses an appropriate implementation by selecting one of
three optimization modes: latency, area, or throughput. As

a consequence ASC chooses the appropriate module for the
particular optimization: a plain combinational arithmetic unit
for latency minimization, a sequential arithmetic unit for
area minimization, and a fully pipelined arithmetic unit for
throughput maximization.

ASC also contains floating point module generators [16]
capable of generating over 200 distinct floating point units.
The generated floating point units differ in their algorithm,
architecture, and timing (pipelining), and thus represent over
200 design points in the area, latency, and throughput design
space. In addition, each of these floating point units can be
generated with a variable number of bits for the mantissa
and the exponent. Furthermore, our arithmetic unit generators
enable a trade-off of precision versus area by enabling the user
to choose custom rounding and normalizing schemes.

C. ASC Memory Systems

The compile-time memory system in ASC supports flip-
flops and registers, FIFO buffers, small, multi-ported, on-chip
SRAM blocks, large on-chip SRAM blocks, off-chip SRAM
memory, and off-chip DRAM memory. At runtime there is
also the processor’s memory system which is managed by the
ASC runtime system. In this section we will focus on the
compile-time part of the memory hierarchy.

One key advantage of having flexibility at the bit level is
that we can generate an application specific memory system
all the way down to the bit level. ASC does not automatically
generate the optimal memory system. Instead ASC provides
a notation to express application-specific memory systems,
in order to enable the exploration of and reasoning about
memory system optimizations. As before, we utilize types
and especially “architectural attributes” to assign algorithmic
variables to the various physical components of the generated
memory system. Thus, ASC variables can be TMP variables
as described before, and INTMEM or EXTMEM for FPGA
internal blockRAM memories and FPGA external memo-
ries. For multiple external memories, ASC provides attributes
EXTMEMO, EXTMEML, etc.

VI.

A conventional hardware module library stores the imple-
mentations of a large set of hardware modules. A module gen-
eration library distinguishes itself from a conventional library
of hardware modules by storing the algorithm that generates
a set of hardware modules based on input parameters, such
as bitwidth of inputs and outputs, and sign representation
of inputs and outputs. For example, the parametrized array
multiplier occupies an area of m x n cells, where m and n are
the bitwidths of the multiplicand and multiplier respectively. In
this sense, module generation is really a software system which
designs hardware, rather than an extension of a hardware
description system.

ASC’s module generation framework, PAM-Blox Il, con-
tains (a) extensions to the underlying gate level layer, PamDC,
and (b) an updated methodology for utilizing object-oriented
features of C++ to module generation for the purpose of
computing with FPGAs.

IMPLEMENTATION OF ASC MODULE GENERATION

Bit-level features:

1) cl ass Net: The generic cl ass Net encapsulates
a set of wires of variable size, and thus enables width
inference at the module generator level. This class
simplifies the C++ code required to describe the gen-
erators. In addition, cl ass Net contains a set of user
defined operators that further simplify the description of
operations on entire sets of wires, such as assignment,
indexing and concatenation. A key feature of cl ass
Net is compatibility with the Standard Template Library
of C++, which is not compatible with PamDC objects
such as Bool , Wre or WreVect or.

2) Support for various sign representation modes on the bit
level: In order to support multiple sign representations
such as twos-complement, sign magnitude, and unsigned
numbers.

3) Xilinx Virtex support includes wrappers for generating
large block RAMs available in the Xilinx Virtex FPGA
family as dedicated, parametrizable blocks of memory.
The gate level designer has the option to select the width
of the constant-size block RAM within the limits of the
particular underlying FPGA technology.

4) In order to make the ASC project and PAM-Blox Il in
particular more accessible, PamDC is ported from Com-
pag ALPHA cxx to GNU gcc version 2.95.2 or higher.
Even though C++ is standardized, porting software be-
tween platforms is still a major challenge because most
of the C++ compilers do not implement a stable set of
the C++ standard.

PAM-Blox Il is implemented on top of these bit-level
features. Object oriented features of C++ correspond to the
tasks involved in describing hardware module generators as
follows:

1) Encapsulation of a module generator in a C++ class:
Object state represents the internal wires and parameters
of the module. These parameters can be accessed by
various other components of the architecture generation
environment such as the scheduler or, possibly, a high
level area and timing estimator. The object functions or
methods describe the logic parametrically, generating the
hardware module based on the input parameters.

2) Code-reuse is supported by a C++ class hierarchy
with explicit inheritance controlled by defining virtual
functions and function overloading. Child objects inherit
all public methods (functions) and variables (state). For
example, all objects with a carry-chain, such as adders,
counters, and shifters, inherit the carry-chain definition
functions from their common parent. This particular
example of code-reuse is paramount to porting the
module generators from one FPGA family to another.
Details on porting Xilinx XC4000 carry chain generators
to Xilinx Virtex devices using inheritance and code-
reuse are summarized at the end of this section.

The major improvements in PAM-Blox Il over the initial
PAM-Blox[42] implementation, in addition to the object-
oriented design decision mentioned above, are:

1) Use of template classes: A template class is a de-

scription of a class that can be instantiated with dif-
ferent variable types as inputs. The most common use
of template classes is in the Standard Template Li-
brary(STL). An STL class such as a vect or can be
instantiated as a vector of integers (vect or <i nt >), a
vector of floats(vect or <f | oat >) or a vector of any
other user-defined class such as vect or <Net >. The
initial PAM-Blox implementation uses template classes
to distinguish hardware integers with different bitwidths
as different types. PAM-Blox Il uses cl ass Net. Asa
consequence PAM-Blox Il treats variables with different
bitwidths as variables of the same type with a different
attribute (or object state).

2) An object-specific “enable” for control: Sequential
modules iterating in parallel for a specific number of
clock cycles require a control input to coordinate the
number of iterations. For example, a one-cycle adder
followed by an N cycle sequential multiplication re-
quires separate control lines for the two units to be
pipelined correctly. Apriori options are: (1) provide
separate clocks, (2) add an enable signal to the logic
equations (LUT) of the module, or (3) use the en-
able input of the flip flop. Providing separate clocks
is impractical due to latency of going between clock
domains and FPGAs limitation to few clock buffers.
Enable inputs as part of the object logic (2) are used
in the initial PAM-Blox implementation. PAM-Blox I
provides a more efficient, separate enable line for flip-
flops (3) of each hardware object.

In summary, the state of a PAM-Blox Il hardware object
consists of: latency, number of sequential cycles, a list of
nested sequential objects, a maximal sequential cycle within
the object (for nested objects), size (bitwidth), a hierarchical
name for debugging, an enable signal, a clock signal, and an
“inputs valid” signal.

A. Portability of Object-Oriented Module Generation

Object-oriented design of hardware module generators en-
ables code-reuse. As a consequence, if a particular feature on
the FPGA changes from one product line to another, such as
for example the carry chain, it is easy to adapt the library to a
new carry chain by overloading a single method. Overloading
this one method then changes the carry chains of all generated
modules which require a carry chain, regardless of the function
that the module computes. The following describes the object
oriented method of porting FPGA features from one FPGA
family to another by using the carry chain example.

Carry chains form the basis of almost all arithmetic circuits
from adders, subtracters, multipliers, and dividers, to more
specialized units such as counters, comparators, and leading-
one-detect circuits. A conventional binary full adder with
inputs A and B has the following well known logic equations:

sum; = A; xor B; xor carry;_1 D

carry; = (A;B;) or (Ajcarry;—1) or (Bicarryi—1) (2)

For all FPGAs with a dedicated carry chain, the above
equations have to be mapped to a four input lookup table

(the lookup table available for logic in the cell) plus some
dedicated custom carry logic. The various FPGA families vary
in the precise way that this partition is accomplished.

In order to simplify porting PAM-Blox to new carry chain
organizations, the two equations above are described by two
separate virtual functions that can be overloaded and inherited.
The next step lies within the details of the partition of the
carry chain equations for the two technologies at hand, Xilinx
XC4000 and Xilinx Virtex devices.

From Xilinx documentation we learn that for Xilinx
XC4000 FPGAs the equations for addition in C++ become:

sum[i] = A[i] ~ BL[i] ~ carry[i-1]; 3

carry[i] = (ALi1&BLiD I ALi1&carry[i-1])1
(BLil&carry[i-1])= 4
= mux(A[i] B[i].,carry[i-1],ZERO);

For Xilinx XC4000 devices, the dedicated carry chain is
inferred by the Xilinx place and route tools based on relative
placement constraints that lock the particular wires to positions
relative to each other.

For Virtex devices the equations for addition are:

sum[i] = xorcy(LUT[i], carry[i — 1]); (5)
carry[i] = muxcy(LUT[i], ZERQ, carry[i — 1]); (6)

Specific function calls muxcy(sel ect, i nput 1, i nput 0)
and xorcy() instantiate dedicated carry chain logic
primitives available inside the Virtex logic blocks. The
LUT[] array describes the logic that goes into the Virtex
adders lookup table. In the case above the lookup table holds
the exclusive-or of the two inputs, or LUT[i] =A[i] " B[i].
Since carry chains use dedicated blocks explicitly, there is no
need for relative placement constraints to infer a carry chain
such as is necessary for XC4000 FPGA:s.

Since the only difference between the two technologies
lies in the above two equations, declaring each one of these
equations in a separate virtual function enables porting PAM-
Blox Il by overloading the carry chain functions of the top
ancestor class. Thus, partitioning the logic into appropriate
virtual functions is the key to portability of an object-oriented
module generation environment and also provides one the key
advantages for using object oriented technology.

VIl. EXAMPLES OF PAM-BLOX Il MODULE GENERATORS

In order to demonstrate the custom designed module gener-
ators for computing with FPGASs, we explain the design of a
few sample module generators, and the impact of having such
custom modules available in the module generator library. The
tradeoffs for the module generators are based on trading area
for speed, hand-optimizing technology mapping to the specific
FPGA microarchitecture, and utilizing a redundant number
representation.

The results for latency and area are based on Xilinx VirtexE
devices (speedgrade —6), and standard Xilinx Foundation
series v3.2 place and route tools.

o
[ns] Add
latency .- -0+ carry chain
—-X-—-- fast carry chain
—X— constant add
10 T ©
7 T—x X VIS
- --X
=X
35 T X
1 1 1 1
8 16 24 32

bitwidth

Fig. 4. The fi gure shows latency of addition given three implementation
choices: carry chain, (dedicated) fast carry chain, and constant time addition.

A. Addition and Subtraction

Addition and Subtraction are the most important module
generators for computing with FPGAs. The results in this
section quantify the advantages of the FPGAs fast carry chain
versus redundant representations.

1) Using Redundant Representations: Redundant represen-
tations are one of the key methods to speed up arithmetic
circuits in VLSI[52]. Redundant encodings are defined by
Omondi[54]. Such redundant digits enable us to trade off
area (more bits) for time by eliminating the carry chain and
obtaining “constant time addition”, where addition time does
not depend on the bitwidth of the operands.

Figure 4 compares carry chain adders with and without
the dedicated fast carry chain, and a constant time adder
using the carry-save redundant representation. The carry-save
representation requires two bits to represent each digit and,
thus, results in a doubling of the required bits to represent a
value. The graph in figure 4 shows the order of magnitude
speedup of carry chain addition provided by the Xilinx fast
carry chain. A single redundant addition is comparable to
a 32 bit carry chain add. Despite that fact, a collection of
adders such as present in an array multiplier (results in figure
5) shows significant time savings for redundant adders even
for bitwidths smaller than 32 bits. Interestingly, not only does
the redundant implementation outperform the multiplier with
fast carry chains, but even scaling turns out to work in favor
of redundant digits resulting a smaller slope of the redundant
multiplication line in figure 5. This surprising result is due to
the structure of redundant representations. Most of the delay
is in the interconnect to and from the unit. By placing multiple
units together, Xilinx place and Route tools can minimize this
interconnect delay and thus optimize the performance of the
combined circuit.

As for area, redundant multipliers are about 5% smaller than
carry chain based implementations. The area advantage results
from a slightly higher utilization of FPGA resources due to
technology mapping of conventional (3, 2) counters[53] which
are the basic building blocks for computing with a redundant
representation. A further optimization of multipliers for com-
puting with FPGAs can be applied to constant multiplication,
as shown in a previous paper[42].

—3-—-- Mult with const adds [ns]'| Mult
—x—— Mult with fast carry chains| latency
100 T
% T
50 T
25 T
| | | |
T T T T
8 16 24 32
bitwidth

Fig. 5. The fi gure shows a latency comparison of two multiplier imple-
mentations: with (dedicated) fast carry chains, and with interna redundant
representation.

B. Comparison oper at or ==

A common computation is to check if two values are equal.
Looking at the problem in a top down approach, one might
consider using a subtracter and checking if the result is zero.
Given the flexibility at the bit-level there are two interesting so-
lutions, one for checking equality of a variable and a constant
and one for checking equality of two variables. Optimizing
for area and latency respectively, one could implement the
comparison operation (1) with a carry chain, or (2) with a
parallel, tree-like implementation.

A closer look at the implementation for comparing a vari-
able with a constant shows that the carry-chain version can
be a subclass of an adder. Such a modified adder then simply
requires the overloading of the carry chain’s LUT functionality
which is a separate virtual function within the adder. The code-
fragment below shows one version of the PAM-Blox Il code
defining a comparison between a variable A and a constant K
at bit position i.

virtual EquationHandler LUT(int 1){
return((((K>>i1)&1) ? ALl :"ALiD&

(((K>>(i+1))&1) ? A[i+1]:"AL[i+1])&
(((K>>(i+2))&1) 2 A[i+2]:"A[i+2]D&
(((K>>(i+3))&1) ? A[i+3]:7AL[i+3]));

This code implies that a single four-input LUT compares up
to four bits against a constant value. As a consequence, the
area of the resulting unit is four times smaller than a subtracter
and delivers the result of the comparison on the carry out wire
of the unit. A similar construction for comparing two variables
leads to a unit of half the size of a subtracter.

A tree-like implementation still reduces up to four bits per
lookup table, but instead of a carry chain, the result is obtained
by reducing the input in a tree like fashion. PAM-Blox Il code
for such a reduction tree is slightly more arduous.

Comparing two variables limits the number of bits that can
be compared in one lookup table to two bits of each input
variable. As a consequence, for the carry chain solution, com-
paring two variables takes about twice the area of comparing a
variable to a constant, and about half the area of a subtracter.

From standard VLSI experience we expect a circuit with a
hierarchical, or tree based solution to be faster than a carry

chain. From an FPGA designers view we expect any solution
that uses the fast carry chain to be superior. The results show
that the dedicated fast carry chain solution is in fact faster than
the hierarchical solution.

One of the conclusions from this result is that knowledge
from VLSI design is not directly applicable to FPGA design
on the module generation level despite the fact that both are
hardware design methodologies. The difference arises from the
particular LUT and interconnect structure of FPGAs and the
associated technology mapping, placement and routing.

VIIIl. TESTING ASC AND ASC PROGRAMS

ASC provides a test infrastructure which automates testing
and precision analysis of the hardware generated by ASC.
This testing feature leads to a regression test-suite and a
simple mechanism for the ASC programmer to write or
utilize an existing software version of the ASC program. ASC
automatically runs whole series of tests which can be defined
and parametrized in the makefile.

A test consists of executing (1) a pure software version of
the code and (2) either a gate-level simulation (PamDC/C++
simulation of circuit on the gate level) or the actual hardware
running on an FPGA in real-time. The output of the two
executions are automatically compared against each other.
The tests can either be specified to check for equivalence of
software and simulation/hardware, or the user can specify an
error bound. With the error bound, ASC ensures that the error
of finite precision arithmetic (e.g. 12-bit multiplication) in the
hardware does not exceed the error-limit when compared to
the software version. The software versions can be written
using the processor’s data types such as double precision IEEE
floating point or 32/64 bit integers. The result of a test is a
message that the test succeeded or failed. In case of a failure,
additional information about the failure case is provided.

We identified verification as an imperative task and ASC
contains substantial support and infrastructure for regression
testing and verification of resulting circuits. For example, to
illustrate the accuracy of the hardware, ASC enables plotting
error graphs which show the error of hardware/simulation over
the software version as a function of input values.

IX. DESIGN SPACE EXPLORATION CASE STUDIES

In this section, three benchmarks — wavelet compression,
Kasumi encryption, and rotation and elementary functions —
are used to illustrate and to evaluate our approach. The first
few benchmarks demonstrate three main kinds of design space
exploration: loops (architecture level), the arithmetic unit level,
and the bit level.

A. Wavelet Compression

The first benchmark we evaluate is Wavelet Compression
based on a piece of code from a wavelet library [9]. The code
is implemented using HW i x variables of 20 bits with the
binary point after the 14th fractional bit. The declarations of
the variables shows the usage of default values for variable
attributes such as sign-mode and bitwidth, and the HW ect or

10

Results for Wavelet

1400
@ XCV300

1200 7 g xG:2v1000
"’ 1000 -0 xczvzooo—.—&%
E 800
§ 600)
S aoo

200 -
0 ; ‘ ‘
0 200 400 600 800

Throughput [Mbit/s]

Fig. 6. Results for the Wavelet design space exploration showing the best
throughput performers for each of the three FPGA sizes. The size of the circle
indicates the area of the design.

declaration which mirrors the functionality of vect or in the
C++ standard template library.

DefaultSign = TWOSCOMPLEMENT; // sign
DefaultSize = 20; // bitwidth
DefaultFract = 14;

HWFix in1(IN),in2(IN),
outl(OUT),out2(0UT);
HWFix low,high,temp,temp2,coeff;

// declare 10

// vectors of HWFix streams
HWvector<HWFix> v_templ(4, new HWFix(TMP));
HWvector<HWFix> v_temp2(5, new HWFix(TMP));
HWvector<HWfix> Icl(4, new HWFix(TMP));
HWvector<HWfix> 1c2(5, new HWFix(TMP));
HWvector<HWFfix> hcl(4, new HWFix(TMP));
HWvector<HWfix> hc2(5, new HWFix(TMP));

The algorithm consists of two consecutive loops. Each
loop can be unrolled in hardware, or ASC can generate an
actual feedback loop in the hardware. ASC provides two main
loop constructs LOOP and UNROLL_LOOP, which explicitly
create a feedback connection or unroll the loop body. Control
flow can be handled by the functional-style | F contruct
which stands for | F(condi tion, true, false).Ifthe
condition is true, the second argument streams to the output,
while if the condition is false, the third argument proceeds.
The following piece of ASC code shows how the user can
explore the design space for loops in ASC:

#ifndef UNROLL1
HWint 1dx1(TMP,5);

idx1=0;

LOOP(sizel_2); // hardware loop
#else

int 1dx1=0; // fully unrolled

UNROLL_LOOP(int i=0;i<sizel 2;i++){
#endif
temp2 = v_templ[idxl<<1];

coefficient = IF(idx1l, Icl[3],
low = low+(coeff*temp2);

Icl[1]);

coefficient = IF(idx1l, hcl[3], hcl[1]):

high = high+(coefficient*temp2);
temp2 = v_templ[(idxl<<l) + 1];

coefficient = IF(idx1, Icl[2], Icl[O]D);

// fractional bits

4000 - Kasumi Encryption

3500 1 Sxcvane

3000 1-1®XC2v1000
@ ©XC2V2000
£2500 H

Y
£2000
[}
. .O. O

51 500 +
0 500

~

1000 4
500 -

1000 1500 2500

Throughput [Mbits/s]

2000

Fig. 7. Kasumi design space exploration with ASC, using a bubble chart.
The size of the bubble corresponds to the area of the circuit. The color of the
bubble shows the particular FPGA (XC.....) used.

low = low+(coefficient*temp2);
coefficient = IF(idx1l, hcl[2], hcl[0]):
high = high+(coefficient*temp2);
1dx1++;
#ifndef UNROLL1
LOOP_ENDQ);
#else

// feedback hardware loop

}
#endif

Notice that in the case of unrolling, the loop index variable
is an integer. In the case of a loop in hardware, the index
variable is a HW nt . A major consequence of unrolling is that
all array indexing can be done at compile time, thus saving a
lot of area for dynamic array accessing. Also, all arithmetic in-
volving the integer i dx1 can now be implemented as constant
arithmetic, i.e. PAM-Blox modules for constant multipliers and
adders, etc.

B. Kasumi Encryption

The second application we examine is Kasumi
encryption[13] which is part of the 3G standard for
wireless communication.

Key opportunities for exploring parallelism at the bit level
are inthe FL() and FQ() function calls (S-boxes), which are
implemented as table lookups in the software version. In the
standard specification these are provided as both lookup tables
and logic functions. When creating application-specific hard-
ware, we convert these tables into boolean equations which
can be minimized with a logic minimization algorithm. Given
enough symmetries in these tables, the resulting circuit can
be made smaller and faster than the corresponding hardware
tables.

ASC allows the user to exploit bit-level parallelism by
creating custom PAM-Blox modules at the bit level. The user
creates modules by extending the PAM-Blox class library with
a new module (sub-class) and creating a function call that
access that particular new module from the ASC code level,
as shown in the code below.
void
kasumi (Kstate *ks, HWvector<HWint> &data){

11

Results for Rotation

60000 -
@ Area
50000 @ Latency =
O Throughput
—_ 30800 ® o
M
= 30000 @
&
8 200001 e
o
- °
-100 100 200 500

-10000

Throughput [Mbits/s]

Fig. 8. Rotation example-exploration of design space-using a bubble chart.
The size of the bubble corresponds to the area of the circuit, when optimizing
for Area, Latency or Throughput (agenda). The different bubbles of the same
color correspond to different bitwidths.

HWint &I (*new HWint(TMP,32,UNSIGNED));
HWint &r(*new HWint(TMP,32,UNSIGNED));
HWint &tl1(*new HWint(TMP,32,UNSIGNED));
HWint &t2(*new HWint(TMP,32,UNSIGNED));
1 = data[0];
r = data[1];

#iT USE_LOOP
HWint i(TMP,6,UNSIGNED);
i=0;
STREAM_OPTIMIZE=AREA;
LOOP(4);

#else
unsigned int i;
UNROLL_LOOP(i1=0;i<8;) {

#endif
tl = FL(ks, I, 1);
r 7= FO(ks, t1, i);
t2 = FO(ks, r, i+l);
1 ™= FL(ks, t2, i+l);
i=i+2;

#if USE_LOOP

LOOP_END(); // feedback

#else
}

#endif
data[0] = I; // assign outputs
data[l] = r;

}

Our implementation of the FL() and FQ() functions has
a user configurable parameter to indicate whether the circuit
should use a lookup table (held in on-chip SRAM such as
Xilinx block RAMS) or a direct implementation of the above.
Thus, when porting the code the user can decide to use
available block RAMs to save area or create the custom logic
to achieve maximal performance.

C. Rotation and Elementary Functions

The third application computes elementary functions sine
and cosine for a coordinate rotation unit. We use polynomial
approximations to generate sine and cosines. The coordinate

Throughput against Bitwidth for Rotation

400 =
—- Alea

%350 - i = Latency]|
E3DO S & ~+ Throughput-
= 250
‘g_zou
=150
=
5100
=
~ 50 - —

D - T T T

] 10 20 30 40

Bitwidth

Fig. 9. The impact of bitwidth on the throughput of the implementation,
when optimizing for Area, Latency or Throughput (agenda).

rotation performs a pair of 2D rotations through input angles
written to memory-mapped registers. The coordinates are then
streamed in and the rotated coordinates are streaming out of
the ASC pipeline.

Use of Def aul t variables and STREAM OPTI M ZE en-
ables exploration of the design space. Changing these options
alters the size of hardware variables or the optimization mode
of the logic blocks; this creates a widely differing range of
hardware implementations.

The code below is the rotation function, demonstrating how
the Default and STREAM OPTI M ZE variables can be
used to explore the design space. In the case below, we vary
bitwidth for each of the optimization modes:

STREAM_START;
DefaultSign=SIGNMAGNITUDE;

// THROUGHPUT, LATENCY or AREA
STREAM_OPTIMIZE = THROUGHPUT;
DefaultSize = 26;

DefaultFract = 21;

HWFix xX(IN),y(IN),z(IN);

HWFix outx(OUT),outy(OUT),outz(0OUT);
HWFix phi(MAPPED_REGISTER);
HWFix delta(MAPPED_REGISTER);
HWFix cosP(TMP),cosD(TMP);
HWFix sinP(TMP),sinD(TMP);

// runtime stream length parameter
STREAM_LOOP(10);

cosP = cos(phi);

cosD = cos(delta);

sinD = sin(delta);

sinP = sin(phi);

outx = x*cosD-z*sinD;

outy = y*cosP+x*sinP*sinD+z*sinP*cosD;
outz = x*sinD*cosP-y*sinP+z*cosD*cosP;
STREAM_END;

The bubble chart in figure 6 shows the design space for the
wavelet compression example. We explore latency, throughput,
and FPGA area, which is shown as the size of the bubbles.
The tradeoffs between the various implementations are based
on different loop unrolling decisions. The smallest design has
no unrolling, the middle one unrolls once and the large im-
plementation is fully unrolled for maximal throughput. Since
each of the bubbles corresponds to the maximal throughput
for a particular FPGA size, we observe the general activity of

12

Latency against Bitwidth for Rotation

50000

45000 { * Ared

40000 H = Latency /
— 1| - Throughput
w 35000 ghp ~—
'~ 30000 i
& 25000
% 20000
5 15000 //

10000 —=

5000 I ——
D T T == T
0 10 20 30 40
Bitwidth

Fig. 10. Theimpact of bitwidth on the latency of the implementation, when
optimizing for Area, Latency or Throughput (agenda).

trading area for performance. ASC enables us to obtain a larger
FPGA and increase performance by recompiling to a larger
area, without changes to the source code. The modifications
are limited to the parametrizations of the source code which
can be located in the makefile.

Figure 7 shows the results of design space exploration for
Kasumi encryption using ASC. The bubbles in the figure each
correspond to a complete design with a particular set of param-
eters which includes loop unrolling and optimization modes
such as latency, area and throughput. The area restrictions for
each particular FPGA limit the number of optimizations that
can be employed. Also, the figure shows only a part of the
complete design space across all levels of abstraction.

The third set of results shows the design space for the
rotation example. Just as for the previous two examples, a
bubble chart in figure 8 shows the design space for varying
precision (bitwidth) and different optimization modes. Given
the user’s precision requirements, it is possible to optimize
down to the individual variables bitwidth. By reducing the
bitwidth of each variable, especially for multipliers and table
indices, considerable savings in time and space can be ob-
served.

In addition, figure 9 and figure 10 show the design space
tradeoff when varying the bitwidth of the variables. The graphs
show the impact of optimizing latency, throughput or area
across different bitwidths. Note an interesting artifact in the
throughput result in Figure 9: when increasing bitwidth with
mainly constant multiplication (e.g. cosP), the throughput
remains close to flat, despite increasing complexity of the
multiplication. Logic minimization seems to get us to the same
clock frequency for different bitwidths in this particular case.
Therefore in this case we can conclude that bitwidth is not
forming a critical bottleneck at these particular bitwidth values.

Also, while throughput optimization clearly increases the
throughput of implementations, there are still surprises some-
times, such as the throughput for different bitwidths which ex-
hibits artifacts from the discrete nature of technology mapping,
and place-and-route. An example of such deviation from the
general shape is in the latency figure for 26 bits: the throughput
line shows a lower value than expected.

IDEA Performance
1000 ~
100 -
10 ~
1 T T T 1
Alpha Proc. XCV300(*) XCV600 XCV2000
Fig. 11. Performance [Mbitg/s] of IDEA Encryption on a Compaq Alpha

processor and arange of Xilinx Virtex devices. (*)This implementation is run
on the Wildcard board.

X. PERFORMANCE RESULTS

Results are obtained using a conventional gcc compiler
and current Xilinx tools under Windows. We run ASC on
Windows/Cygwin and Linux since these are the platforms for
which we can get Xilinx tools. ASC itself requires gcc and
can be compiled on any system supporting gcc.

We simulate the implementations on the gate-level by
compiling ASC code with gcc and running the program in
simulation mode. Gate level simulation is provided by PamDC.
Since ASC can target any FPGA board, the reported results
show FPGA peak performance without taking into account
board level bottlenecks.

The two case studies are IDEA encryption and lossless
compression:

1) IDEA Encryption: IDEA encryption serves to demon-
strate the effects of the above redundant multipliers on the
performance of an application. The International Data Encryp-
tion Algorithm (IDEA) encrypts or decrypts 64-bit data blocks,
using symmetric 128-bit keys. The 128-bit keys are expanded
further to 52 sub-keys, 16 bits each. A single algorithm
uses different keys for encryption and decryption. The inner
loop is repeated eight times, and consists of operations: zor,
multiplication, addition, and (mod 26 4 1).

Figure 11 shows a performance comparison of running
the inner loop of IDEA encryption on an Alpha, EV5.6
(21164A) processor operating at 532 MHz, compiled with
the native Alpha C compiler, and a series of Xilinx Virtexg
FPGAs (speedgrade -6). The FPGA designs include glue logic
for the Wildcard [56] from Annapolis Microsystems with a
Xilinx XCV300E device. The implementation for the Wildcard
(XCV300E) utilizes 99% of the FPGAs lookup tables.

The performance results show a speedup of about two times
for the conventional XCV300E implementation without “re-
dundant multipliers”, and another factor of two speedup with
“redundant multipliers” for the XCV300E and the XCV600E,
using the redundant adders from section 3.1. In the case of the
XCV2000E the design is fully unrolled and thus throughput
does not depend on the latency of the operations. Since redun-
dant multipliers only help with latency, and the XCV2000E
implementation is fully unrolled and pipelined, latency does
not impact performance/throughput and thus redundancy does
not generate a performance bar for the XCV2000E. Since

13

Compress Performance
100 -
10
Alpha Proc. XCV300(*) XCV600 XCV1000

Fig. 12. Performance [Mbits/s] of compression on an Alpha processor and a
range of Virtex devices. (*)This implementation is run on the Wildcard board.

redundant multipliers only help with latency, there is only one
performance bar for the XCV2000E.

2) Lossless Compression: The results for compression
demonstrate the effects of optimal comparison units on com-
pression performance.

Lempel-Ziv (LZ) compression has many variations. In this
example we implement a very simple form of LZ-like com-
pression where we look at D bytes of history, and try to match
a string up to length D into the future. As a consequence
the implementation consists of a two-dimensional array of
comparison units.

Figure 12 shows the performance comparison of our variant
of LZ compression with D = 26, using the same methodology
as in the previous example. The implementation for the
Wildcard/XCV300E utilizes 99% of the CLBs. The results
show that the 10% improvement in cycle time of the stand-
alone compare units, described in section 3.1, scales to a 10%
performance improvement for our variant of LZ compression.
In general, ASC allows us to explore low level optimizations
and quickly study their impact on complete application per-
formance.

XI. CONCLUSIONS

The results presented above show a wide range of opti-
mizations that can be undertaken within the ASC system.
Optimizations on the algorithm level, the architecture level,
the arithmetic level and the bit level can be explored within the
same C++ program. On the architecture generation level, ASC
enables the exploration of area, latency, and throughput trade-
offs for hardware design, and accelerator generation especially.
Moreover, ASC is a platform for tools that automate the
exploration of the area-time design space. On the module
generation level PAM-Blox Il is a core enabling technology for
computing with FPGAS, enabling the programmer to take full
advantage of the bit-level flexibility of FPGAs. This flexibility
enables us to explore Bit Level Parallelism (BLP), in addition
to parallelism on higher levels of abstraction.

Although the user does have expanded design space with
variable granularity, bit-level to architecture-level, obviously,
bit-level and architecture specific optimizations require the
user to change the source code for changes in the target
technology family - such as if Virtex4 were the desired target

architecture. This may require considerable effort but is not
avoidable due to the nature of manual bit-level optimization.
Also, ASC is technology specific to Xilinx, a limitation which
other similar tools do not have, but which enables the user to
optimize for the Xilinx architecture specific low-level features.
Clearly, this is a limitation of project resources rather than the
methodology itself.

On the language side, careful utilization of C++ features
yields an efficient abstraction for the development, mainte-
nance, and extension of a large module generator library
and an architecture generation layer such as present in ASC.
Concrete conclusions from the sample module generators
shown in this paper are:

1) A single redundant (constant latency) addition is com-
parable to a 32 bit carry chain add. Despite that fact, a
collection of adders such as present in an array multiplier
shows significant time savings for redundant adders even
for bitwidths smaller than 32 bits. This surprising result
can be explained by finding that most of the delay of a
stand-alone constant-time adder can be optimized away
when compiling a whole set of such adders, while the
delay through the carry chain is fixed by the technology.

2) Knowledge from VLSI design is not directly applicable
to FPGA design despite the fact that both are hardware
design methodologies. In particular, design tradeoffs
depend largely on the available resources in the FPGA
cell, and on the optimality of technology mapping,
which can be controlled within the module generation
layer.

3) The object oriented design of module generators allows
us to retarget ASC to multiple Xilinx FPGA families
such as the Xilinx 4000, Virtex, Virtex 2, Virtex 4,
Spartan 2, and Spartan 3. In addition to Xilinx FPGAs,
we also consider porting PAM-Blox Il to Altera devices.
However, any such effort is complicated by the artificial
incompatibility of Xilinx and Altera netlists on the
and/ or gate level, even though both netlists are in
standard EDIF format. As a consequence this effort is
left for future work.

Our experience substantiates that ASC simplifies hardware
design: in fact most of the ASC application code presented
in this paper is developed by C++ programmers rather than
hardware designers. With ASC hardware design productivity
and the complexity of the description are close to software
development.

We foresee another layer of software on top of ASC archi-
tecture generation, which will automate tasks such as precision
analysis, loop transformations, memory management genera-
tion, and partitioning of an application into software and hard-
ware accelerators. In addition, such a high level transformation
layer will be able to deal efficiently with data-structures. The
combination of these techniques has the potential to attack the
memory wall[57] and result in productive interactions between
FPGA research results and microprocessor-centered research.
Clearly, some of the high level transformations will not be
fully automatable in the near future. Some transformations will
have to be partially automated in conjunction with user hints.

14

Minimizing the user hints necessary for successful acceleration
across a wide range of applications is one of the long term
goals.

XIl. ACKNOWLEDGEMENTS

We thank the Computing Sciences Center at Bell Labs
and Imperial College for support of the ASC research effort.
Individual thanks go to Wayne Luk, Michael J. Flynn, Martin
Morf, and Cliff Young for discussions and support of ASC
efforts. David Pearce, Jian Liang, Gary Huang, Henry Styles,
and Lee Howes, helped to advance ASC and wrote some
of the code examples. We are indebted to Mark Shand for
keeping PamDC up to date with current Xilinx technology,
for his efforts in porting PamDC to GNU gcc, and for his
help with various PamDC related issues. The support of
the UK Engineering and Physical Sciences Research Council
(Contract GR/R 55931) is gratefully acknowledged.

REFERENCES

[1] S.G. Abraham, B.R. Rau, Efficient design space exploration in PICO,
Proc. CASES, International Conference on Compilers, Architecture and
Synthesis for Embedded Systems, San Jose, California, Nov. 2000.

[2] S. Aditya, M. S. Schlansker, ShiftQ: A bufferred interconnect for
custom loop accelerators, Proc. CASES, International Conference on
Compilers, Architecture and Synthesis for Embedded Systems, Atlanta,
Georgia, Nov. 2001.

[3] Arvind, Can Dataflow subsume von Neumann computing? 16th
International Symposium on Computer Architecture (ISCA), Jerusalem,
Israel, May 1989.

[4] K. Bondaapati, V.K. Prasanna, Dynamic Precision Management
for Loop Computations on Reconfigurable Architectures, In IEEE
Symposium on FPGAs for Custom Computing Machines, April 1999.

[5] L. Bossuet, G. Gogniat, J.-L. Philippe, Fast Design Space Exploration
Method for Reconfigurable Architectures, Proc. International Confer-
ence on Engineering of Reconfi gurable Systems and Algorithms, 2003.

[6] M. Budiu, S. C. Goldstein, K. Walker, M. Sakr, BitValue Inference:
Detecting and Exploiting Narrow Bitwidth Computations, Europar
Conf., Munich, Germany, Aug. 2000.

[7] T.J. Cadlahan, J. R. Hauser, J. Wawrzynek, The Garp Architecture and
C Compiler., IEEE Computer, April 2000.

[8] Ceoxica, Handel-C Language Reference Manual,
http://www.cel oxica.com/

[9) G. Davis, J Danskin, R. Heasman, Wavelet Im-
age Compression Construction Kit, \ersion 0.3,

http://www.geoffdavis.net/dartmouth/wavel et/wavel et.html

[10] A. Dhodapkar, J. Smith, Managing Multi-configuration Hardware via
Dynamic Working Set Analysis, International Symposium on Computer
Architecture (ISCA), Anchorage, May 2002.

[12] J. Frigo, M. Gokhale, D. Lavenier, Evaluation of the Streams-C
C-to-FPGA Compiler: An Applications Perspective., |IEEE FPGA
Conference, Monterey, CA, Feb. 2001.

[12] M. Gokhde, J. Kaba, A. Marks, J. Kim, Malleable architecture
generator for FPGA computing, Reconfi gurable Logic, Proc. SPIE
2914, Bellingham, WA, Oct. 1996.

[13] Kasumi Encryption Algorithm,
http://www.3gpp.org/

[14] P H.W. Leong, M. P. Leong, O. Y. H. Cheung, T. Tung, C. M. Kwok,
M. Y. Wong, K. H. Lee, Pilchard - A Reconfigurable Computing
Platform with Memory Slot Interface, Proc. IEEE Symp. on FPGAs
for Custom Computing Machines, Apr. 2001.

[25] Y. Li, et. d., Hardware-software co-design of embedded reconfigurable
architectures, Design Automation Conference, 2000.

[16] J. Liang, R. Tessier, O. Mencer, Floating Point Unit Generation and
Evaluation for FPGAs Proc. IEEE Symp. on FPGAs for Custom
Computing Machines, Apr. 2003.

[17] M. Macedonia, The Computer Graphics War Heats Up,
Computer Magazine, October 2002.

[18] O. Mencer, PAM-Blox II: Design and Evaluation of C++ Module
Generation for Computing with FPGAs, Proc. IEEE Symp. on FPGAs
for Custom Computing Machines, Apr. 2002.

3G Wireless standard,

IEEE

[19]

[20]

[21]

[22]

(23]

[24]

[29]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(39]

(36]

(37]

(39]

(39]

(40]

[41]
[42]

[43]

[44]

[45]

[46]

O. Mencer, W. Luk Tutorial: Computing with FPGAs, International
Symposium on Computer Architecture (ISCA), Anchorage, May 2002.
O. Mencer, M. Platzner, M. Morf, M. Flynn, Object-oriented Domain-
Specific Compilers for Programming FPGAs, IEEE Transactions on
VLS, special issue on Reconfi gurable Computing, Feb. 2001.

T. Sherwood, B. Calder, Automated Design of Finite State Machine
Predictors for Customized Processors, International Symposium on
Computer Architecture (ISCA), June 2001.

B. So, P. Diniz, M. Hall, Using Estimates from Behavioral Syn-
thesis Tools in Compiler-Directed Design Space Exploration, Proc.
ACM/IEEE 40th Design Automation Conference, June 2003.

B. So, M. Hdl, P. Diniz, A Compiler Approach to Fast Design
Space Exploration in FPGA-based Systems, Proc. ACM Conference
on Programming Language Design and Implementation (PLDI’2002),
ACM Press, June 2002.

M. Weinhardt, W. Luk, Pipeline Vectorisation, |IEEE Transactions on
Computer-Aided Design, February 2001.
Xilinx, Virtex-E and Virtex I
http://www.xilinx.com/

P. Bertin, D. Roncin, J. Vuillemin, Programmable Active Memories: A
Performance Assessment, ACM FPGA, February 1992.

D. A. Buel, J. M. Arnold, W. J. Kleinfelder, Splash-2, FPGAs in a
Custom Computing Machine IEEE Computer Society Press, 1996.
W.H. Mangione-Smith, B. Hutchings, D. Andrews, A. DeHon, C.
Ebeling, R. Hartenstein, O. Mencer, J. Morris, K. Paem, V. Prasanna,
H. Spaanenburg, Seeking Solutions in Configurable Computing, IEEE
Computer, Dec. 1997.

O. Mencer, M. Morf, M. Flynn, Hardware Software Tri-Design of
Encryption for Mobile Communication Units International Conference
on Application Specifi ¢ Signal Processing, Seattle, May 1998.

O. Mencer, M. Morf, CORDICs for Reconfigurable Computing The
Sixth FPGA / PLD Design Conference and Exhibit, Yokohama, Japan,
June 24-26, 1998.

M. Shand, J. Vuillemin, Fast Implementations of RSA Cryptogra-
phy, 11th IEEE Symposium on Computer Arithmetic, Windsor, ONT,
Canada, 1993.

F. F. Lee, A Scalable Computer Architecture for Lattice Gas Simulation,
PhD Thesis, Stanford, June 1993.

H. Styles, W. Luk, Customising graphics applications: techniques
and programming interface, IEEE Symposium on Field Programmable
Custom Computing Machines (FCCM), Napa, CA, April 2000.

S. D. Haynes, PY.K. Cheung, W. Luk, J. Stone, Video Image Processing
with the SONIC Architecture, |EEE Computer, April 2000, pp 50 - 57.
M. Stephenson, J. Babb, S. Amarasinghe, Bitwidth Analysis with
Application to Silicon Compilation, Proc. of the ACM Conf. on
Programming Language Design and Implementation, Vancouver, BC,
June 2000.

R. Razdan, PRISC: Programmable Reduced Instruction Set Computers,
Ph.D. thesis, Harvard University, May 1994.

L. Semeria, Applying Pointer Analysis to the Synthesis of Hardware
from C, Ph.D. thesis, Electricadl Engineering Department, Stanford
University June 2001.

O.S. Unsd, I. Koren, C. M. Krishna, C. A. Maritz, Cool-Cache for
Hot Multimedia, MICRO-34 Conference, Austin, Texas, Dec, 2001.
L. Zhang, Z. Fang, M. Parker, B. K. Mathew, L. Schadlicke, J. B.
Carter, W. C. Hsieh, S. A. McKee, The Impulse Memory Controller,
IEEE Trans. on Computers, Nov. 2001.

O. Mencer, H. Huebert, M. Morf and M.J. Flynn, StReAm: Object-
Oriented Programming of Stream Architectures using PAM-Blox, Field-
Programmable Logic and Applications, LNCS 1896, Springer, pp. 595—
604, 2000.

The Xtensa Processor http://www.tensilica.com/

O. Mencer, M. Morf and M.J. Flynn, PAM-Blox: High Performance
FPGA Design for Adaptive Computing, Proc. IEEE Symp. on FPGAs
for Custom Computing Machines, IEEE Computer Society Press,
pp. 167-174, 1998.
Synopsys,
fpga_express.html
P. Bertin, H. Touati, PAM Programming Environments: Practice
and Experience, |EEE Workshop on FPGAs for Custom Computing
Machines, April 1994.

J. Kunkel, K. Kranen, SystemC demonstrates rapid progress, EE Times,
Sept. 2000.

J. Kunkel, K. Kranen, Celoxica adds simulator, debugger to Handel-C
compiler, EE Times, Feb. 2001.

Pro FPGA Datasheet,

http://www.synopsys.com/products/fpga/

[47]

(48]

[49]

(50]

(51]

(52

(53]
[54]
(55]

(56]
(57]
(58]

15

S. A. Guccione, D. Levi, XBI: A Java-based Interface to FPGA
Hardware”, in Configurable Computing Technology, Proc. SPIE
Photonics East, John Schewel, ed., Bellingham WA, Nov. 1998.

A. Frey, G. Berry, P. Bertin, F. Bourdoncle, J. Vuillemin, Jazz is
a high-level programming language for expressing [...] large digital
synchronous circuits. http://www.exalead.com/jazz/

B. Hutchings, P. Bellows, J. Hawkins, S. Hemmert, B. Nelson, M.
Rytting, A CAD Suite for High-Performance FPGA Design, |EEE
Symposium on Field Programmable Custom Computing Machines
(FCCM), Napa, CA, April 1998.

B. Stroustrup, The C++ Programming Language, 3rd ed. Addison-
Wesley, 1997.

H. Boehm, Space Efficient Conservative Garbage Collection, Proceed-
ings of the ACM SIGPLAN 91 Conference on Programming Language
Design and Implementation, SIGPLAN Notices 28, 6, June 1993.
D.S. Phatak, T. Goff, |. Koren, Constant-Time Addition and Simulta-
neous Format Conversion based on Redundant Binary Representation,
IEEE Trans. on Comp., Nov. 2001.

I. Koren, Computer Arithmetic Algorithms, Prentice Hall, 1993.

A. Omondi, Computer Arithmetic Systems, Prentice Hall, 1994.

O. Mencer, W. Luk, Parameterized High Throughput Function Eval-
uation for FPGAs, Journa on VLS| and Signa Processing (special
issue on field programmable logic), Kluwer Academic Publishers,
Netherlands, 2002.

Annapolis Microsystems Wildcard, a Cardbus based FPGA Accelerator
card. http://www.annapmicro.com/

W. A. Wulf, S. A. McKee, Hitting the Memory wall: Implications of
the Obvious. Computer Architecture News, 23(1), March 1995.

W. Luk, S. McKeever, Pebble: a language for parametrised and
reconfigurable hardware design. Field-Programmable Logic and Ap-
plications (FPL), Springer, 1998.

