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ABSTRACT

Field programmable gate arrays (FPGAs), graphics process-

ing units (GPUs) and Sony’s PlayStation 2 vector units offer

scope for hardware acceleration of applications. We com-

pare the performance of these architectures using a unified

description based on A Stream Compiler (ASC) for FPGAs,

which has been extended to target GPUs and PS2 vector

units. Programming these architectures from a single de-

scription enables us to reason about optimizations for the

different architectures. Using the ASC description we im-

plement a Montecarlo simulation, a Fast Fourier Transform

(FFT) and a weighted sum algorithm. Our results show that

without much optimization the GPU is suited to the Mon-

tecarlo simulation, while the weighted sum is better suited

to PS2 vector units. FPGA implementations benefit partic-

ularly from architecture specific optimizations which ASC

allows us to easily implement by adding simple annotations

to the shared code.

1. MOTIVATION

We consider accelerating software with coprocessors and

classify them into custom and general purpose coprocessors.

Custom coprocessors execute a single task, such as MPEG

decoding or encryption. General purpose coprocessors such

as graphics processing units (GPUs) and PlayStation 2 vec-

tor units (PS2) can be used for a variety of tasks. In addition

we see FPGAs which are able to implement a custom copro-

cessor dynamically. These are widely different technologies

and it is unclear which is best suited to a given task.

Deciding which acceleration technology is most appro-

priate poses a challenge. Programming methodologies range

from circuit design for FPGAs through high level language

support for GPUs to assembly programming for the vector

units. We present a system that generates implementations

for FPGAs, GPUs and PlayStation vector units from a single

parallel description. Unlike behavioral synthesis approaches

that rely on complex analyses to infer parallelism, we seri-

alize a stream description onto each architecture using ASC,

A Stream Compiler [1] for FPGAs.
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Fig. 1. A Stream Compiler (ASC) code as a unified descrip-

tion which compiles to GPUs, to the Sony PlayStation 2’s

Vector Units and to FPGAs.

We offer the following contributions:

• A unified description using ASC code to describe al-

gorithms for graphics processing units (GPUs), the

PlayStation 2 (PS2) and FPGAs, allowing for testing

and performance comparisons on different platforms.

• A performance comparison of three application bench-

marks on GPUs, the PS2 and FPGAs: a Montecarlo

simulation, an FFT and a weighted sum algorithm.

Figure 1 shows the general concept of our system.

1.1. Background

There is a wide spectrum of architectures available for co-

processors and hardware accelerators. Small scale coproces-

sors range from the floating point units (FPUs) that we see as

extensions to general purpose processors to Intel’s Stream-

ing SIMD Extensions (SSE) [2] and semi-independent vec-

tor coprocessors. IBM, Sony and Toshiba’s new Cell [3]

processor is a further extension of the principle of vector

coprocessors.

Various architectures exist for tasks where large scale

computations can be moved to coprocessors. Domain-specific

hardware, optimized for a specific class of problems, is com-

mon. Network processing hardware often uses a domain-

specific processing unit known as a network processor [4].

Network processors are highly programmable but structurally



Table 1. Features of FPGAs, Sony PlayStation 2 and GPUs. Communication refers to data transfers between the main CPU

and the accelerator. Good, bad and medium are defined in terms of assistance towards obtaining high performance.

Feature FPGA PCI card PlayStation 2 GPU Pentium Pentium with SSE

Communication latency bad good medium good good

Performance latency bad good medium good good

Performance throughput good bad good bad medium

Flexibility good medium medium good bad

Ease of programming bad medium medium good medium

optimized for processing network traffic flows. Philips pro-

duces the TriMedia processor [5], a VLIW processor op-

timized for processing media data often found in set-top

boxes and similar units. The Imagine Stream Processor [6]

from Stanford University is a general purpose stream-based

architecture benchmarked on media processing, polygon ren-

dering and similar applications.

Graphics processing units (GPUs) are widespread and

used to accelerate the graphics processing that modern per-

sonal computer users, and particularly game players, de-

mand. GPU technology now offers large, complicated pro-

cessors with higher transistor counts than even many of the

latest general purpose processors. Modern GPUs are highly

programmable and can be used for accelerating computation

that is no-longer limited to graphics [7]. Additional hard-

ware for general purpose acceleration, based on GPU tech-

nology, is in production; for example, ClearSpeed’s CSX

architecture [8].

Reconfigurable technology offers another approach to

hardware acceleration: rather than a fixed architecture pro-

grammed by instructions, we can reconfigure the architec-

ture. Configuration can be performed at the gate level, as

in FPGAs, or at higher levels, for example in Morphosys’

reconfigurable SIMD system-on-chip product [9].

Cope et al. [10] investigate comparisons between GPUs

and FPGAs in the area of video processing. Their compar-

isons do not, however, make use of a unified high level rep-

resentation.

2. TARGET ARCHITECTURES

The three architectures targeted by this work are FPGAs,

Graphics Processing Units and the vector units in the Sony

PlayStation 2’s Emotion Engine processor. Some features

of the architectures, and of the Pentium Processor, are de-

scribed in Table 1.

FPGAs: In the context of this work we are looking at

SRAM based FPGAs as the compilation target of ASC. The

FPGA itself is treated as a flexible data-processing device.

Application specific integrated circuits can be used as accel-

erator coprocessors and are often faster than FPGA imple-

mentations, however FPGA flexibility allows them to accel-

erate multiple applications making them comparable with

GPUs and vector accelerators.

The Graphics Processing Unit (GPU): The main com-

ponent in a computer system dedicated to the acceleration of

computer graphics, modern GPUs offer programmable exe-

cution for processing vertices and pixels and we can map

these programmable stages onto general purpose computa-

tion. Figure 2 demonstrates how data flows through the GPU

and how the GPU fits in the computer system. The Pixel,

or fragment, processor presents the programmer with input

and output pixel arrays. These pixel arrays can be treated

as rectangular single precision floating point data buffers for

general computation [7]. Programming the GPU is gener-

ally performed in a graphics oriented language. NVIDIA’s

Cg [13] and the GL Shader Language (GLSL) present C-like

languages but require understanding of OpenGL or DirectX

graphics programming. Brook for GPUs [11] treats the GPU

as a stream architecture and abstracts the complexities of

graphics programming, but is currently limited in scope to

GPUs only. None of these languages allows development in

a form that can easily be applied to other architectures.

The Sony PlayStation2: A games console that has

to date achieved sales of over 90 million units, at the core

of the PS2 is the collection of processors known collec-

tively as the Emotion Engine, see Figure 3. The emotion

engine comprises a general purpose MIPS processor with

floating point unit and SIMD extensions, two vector copro-

cessors, a graphics processor and associated peripheral com-

ponents. The Vector units, VU0 and VU1, are both highly

programmable with flow and branching control. The vector

units are limited to accessing their own local memory and

as a result can only work on data passed from main mem-

ory. Data transfers into the memory of the vector units are

performed via DMA and over a fast (2.4Gb/s) bus.

3. ASC - A STREAM COMPILER

A Stream Compiler (ASC) is a compiler that generates stream

architectures for FPGAs. ASC uses an object oriented ap-

proach [15] to development and allows optimization of the

design at the algorithm, architecture and arithmetic levels.

As its name suggests, ASC is optimized for describing stream

architectures. An ASC program represents a data-flow sys-

tem which can be seen as a stream. ASC code uses a C++

class library and an example can be seen in Figure 5. ASC is

not a behavioral synthesis tool like the work by Venkatara-
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Fig. 2. Location of the GPU and FPGA in the PC system

identifying the important buses.

mani et al. [16]. Noting the difficulties of behavioral synthe-

sis, ASC allows direct implementation of a hardware design,

using C++ to reduce the programmer and tool chain over-

head for development. Unlike other circuit design tools such

as Handel-C and Streams-C [17], ASC combines the algo-

rithm, architecture and arithmetic levels into a single tool.

Development access to multiple levels of the design hierar-

chy gives the ASC programmer great flexibility in the im-

plementation method when required. Performance, bitwidth

and area requirements of each part of the stream can be sepa-

rately optimized [18] with little necessary programming bur-

den.

4. COMPILING TO GPUS AND PLAYSTATIONS

Compiling ASC code to GPUs and PlayStations requires

backends to target the different technologies. In its basic

form ASC is tied to FPGA circuit generation and as a result

the most efficient approach is to reimplement high level ob-

jects representing the ASC API itself when using the GPU

or PS2 backends. ASC code represents a data-flow model

of a stream program. Each assignment statement creates a

connection in the dataflow graph rather than a static data as-

signment. Internally the frontend creates a dataflow model

of the program in an object-oriented, easily traversable form.

The choice of architecture affects the manner in which

the data-flow graph is processed. Architectural differences

are transparent to the programmer, requiring only the selec-

tion of the appropriate target as indicated in Figure 1. ASC

generates a single executable combining the overall program

with the necessary runtime system to program the accelera-

tor.

4.1. Translating ASC code for the GPU

ASC programs represent the flow of data in an abstract stream

processor. Execution of an ASC program generates a dataflow

graph. The ASC dataflow graph is processed internally to

generate a set of abstract syntax trees (ASTs) representing

fragment programs necessary to represent the algorithm. Each

fragment program is output as code to pass to the Brook [11]

compiler, which performs simple operations to enable use
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Fig. 3. The Emotion Engine at the heart of the PlayStation

2 architecture [14] showing the MIPS processor and dual

vector units.

of the Brook runtimes. Brook’s runtimes abstract away the

OpenGL or DirectX calls to hardware.

Most intermediate nodes of the dataflow graph, repre-

senting temporary stream variables, appear as registers in a

fragment program. In each executing instance of a fragment

program, generating a single output stream element, these

registers will take intermediate values of the ASC temporary

variables. Each fragment program execution works from a

given set of input buffers to an output buffer. A buffer of n

elements represents a variable over n stream iterations.

The implementation of registers, memories and data-flow

cycles common in finite state machine descriptions is lim-

ited on the GPU by the lack of inter-fragment communica-

tion. The GPU must be treated as a pure stream architecture,

where each output can be calculated based on input values

alone. Due to the stream limitation, registers and memories

are only converted from the ASC implementation if they are

read only. Given the read-only restriction on registers and

memories, feedback cycles are removed entirely. Delays or

FIFOs, common in digital circuits and also in stream appli-

cations must be recreated either through additional code at

different temporal offsets, or through the use of intermediate

buffers storing the same data item at various time points.

Final compilation makes use of NVIDIA’s Cg compiler

to produce high quality assembly code for a wide range of

GPU architectures. Each transfer from one intermediate buffer

to another is performed by a separately compiled application

kernel.

4.2. Translating ASC code for the Sony PlayStation 2

Unlike the GPU, which processes a large block of stream

data in each kernel but where each kernel performs only a

small amount of processing, the PS2 vector units implement

an entire computation in a single program.

The original data-flow graph generated by the ASC fron-

tend is used to create an Abstract Syntax Tree (AST) result-

ing in assembly code as in Figure 4. The AST represents the

combination of operations required to perform the stream

computation. Both single element and vector instructions

are possible in the AST such that an instruction can be gen-

erated to process four data points simultaneously whilst still
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 ...
 ; load constant 5

 ; Put 5 into each 
 ; component of the
 ; vector reg6

 lq.y reg7, 0(vi00)
 sub reg6, vf00, vf00

 add reg6, reg6, reg7[y]
 ...

kernel void k_out_var7( ... )

{
    float var8;
    float var10;

    var10 = ( 5 + in_var3 );
    out_var7 = ( var10 * in_var5 );

} /* End kernel k_out_var7*/

PS2 Vector Units GPU Kernel

Fig. 4. ASC code, the data-flow graph generated from it and

resulting partial code for both the PlayStation 2 vector units

and the GPU.

allowing the generation of control-flow instructions.

The input stream is divided into small parallel work units

which are processed in the vector units as necessary.

5. APPLICATIONS

To demonstrate our approach and to investigate performance

comparisons we look at three applications to accelerate: a

Montecarlo simulation, a Fast Fourier Transform and a sim-

ple weighted sum calculation. Since current GPUs are lim-

ited to single precision floating point we restrict ourselves

to single precision to make the comparison fair, although

the FPGA supports adaptable precision. In each case perfor-

mance results of the raw implementations are be compared

against each other, and also against an implementation of the

same algorithm running on a fast Pentium 4 processor.

Montecarlo simulation: Montecarlo methods are algo-

rithms employing random (or pseudo-random) numbers to

solve computational problems. One example of the use is

in area sampling: rather than sampling every point, random

points spread evenly through the region are used. As a re-

sult information is provided that can be generalized across

the region. In this case we implement a slight simplification

of a Montecarlo simulation originally intended for simulat-

ing the value of European call options based on given pa-

rameters. The original asset price is specified and a set of

randomly generated sequences of subsequent asset prices is

generated over a given time-frame. The Montecarlo simu-

lation contains a static loop which maps well onto the GPU

  int i,a[SIZE],b[SIZE];

  for (i=0; i<SIZE; i++){

    b[i] = a[i] + 1;

  }

  STREAM_START;

  // variables and bitwidths

  HWint a(IN, 32),b(OUT, 32);

  STREAM_LOOP(SIZE);

  STREAM_OPTIMIZE = 

     THROUGHPUT;

  b = a + 1;

  STREAM_END;

In C (Software): ASC Code:

Fig. 5. C code with a simple loop compared with ASC code

representing a hardware stream version of the same loop.

Optimization mode setting is for maximum throughput.

architecture.

FFT: Fourier transforms have many uses, particularly in

audio and visual applications. In this case we look at an

implementation of a radix-2 butterfly. This was originally

an ASC FPGA example and has been implemented for both

the GPU and PlayStation 2 largely to show that it is possible

to do so with little or no work.

Weighted sum: The weighted sum algorithm multiplies

the last four values in the stream by constants, totals those

values, and then totals the last four of those sums. The

weighted sum is a simple calculation of a form seen in filter-

ing algorithms. The algorithm makes use of the prev func-

tion that inserts a delay in hardware fairly heavily and uses

intermediate buffers on the GPU as a result.

In the case of the Montecarlo and FFT computations we

can use ASC abstractions to easily optimize the FPGA im-

plementation utilizing BlockRAMs to keep data on the chip.

The Montecarlo static loop prohibits the use of registers be-

tween logic elements, computing the inner loop between

buffers repeatedly offers full scope for pipelining. The FFT

requires multiple passes, in the naive implementation data

reordering between passes is performed in software. In the

buffered version, intermediate data is stored and reordered

on chip.

6. RESULTS

We show results of the Montecarlo, FFT and weighted sum

algorithms on our three target architectures. In addition we

show execution times for the same algorithms written in C

and running on a Pentium 4. GPU timings are performed

on a Athlon 64 2000+ machine, FPGA tests on a 2 GHz

Pentium 4 and Pentium results on a 3.2 GHz Pentium 4.

We use a Xilinx Virtex-II 6000 FPGA running on an

ADM-XRCII PCI card and an NVIDIA 6800Ultra GPU in

an AGP slot. We compile the ASC code for the FPGA and

GPU using GCC 3.3, on the PS2 using GCC 2.95 (the maxi-

mum available for the architecture) and the Pentium code us-

ing Intel C++ version 9.0. The Intel compiler is used on the

Pentium due to its support for vectorization and SSE-2 ex-

tensions. Timing results are obtained using real transfer-to-
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Fig. 6. Montecarlo simulation using a Pentium 4 3.2 GHz

CPU using Intel’s C compiler with -O3 optimization and

full optimization including vectorization. We compare with

the same execution running on an NVIDIA 6800 Ultra, the

PS2’s vector units, the PS2 CPU and a Xilinx Virtex2-6000-

6 FPGA with and without on-chip buffering.

hardware times measured by calls to the gettimeofday func-

tion, except for the optimized FFT and Montecarlo which

are based on cycle accurate estimates. FPGA computations

are optimized for throughput in all cases except the naive

Montecarlo.

Figure 6 and Figure 8 show the performance comparison

between the architectures for the Montecarlo and weighted

sum algorithms working on dataset sizes ranging from 100,000

data points to one million data points. Figure 7 uses a range

of powers of two from 16 to 524288 for the FFT, however

the optimized implementation cannot currently support more

than 8192 points due to memory limitations. This small FFT

could be used to calculate results for larger transforms.

The Montecarlo simulation shows how well the GPU

can perform when the algorithm is well matched to its ar-

chitecture. The GPU execution is 3 times faster than the

nearest competitor. Each executing fragment program of the

GPU maps onto a single Montecarlo simulation leading to as

much parallelism as the GPU can offer. The FPGA Monte-

carlo simulation shows how the static LOOP construct makes

the FPGA implementation inefficient and some idea of how

this can be rectified is shown by the buffered Montecarlo

(which is implemented in 24 bit precision due to area lim-

itations which can be corrected with a larger FPGA). The

circuit is unpipelined and clocks at 0.4 MHz against the

pipelined version clocking at 34 MHz. The optimized FFT

circuit only runs at around 50 MHz indicating that there is

still room for improvement in ASC’s circuit generation.

Results from the FFT show a wide performance range.

The inefficient memory rearranging and high transfer time
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Fig. 7. Radix-2 FFT using a Pentium 4 3.2 GHz CPU using

Intel’s C compiler with -O3 optimization and full optimiza-

tion including vectorization. We compare with the same ex-

ecution running on an NVIDIA 6800 Ultra, the PS2’s vector

units, the PS2 CPU and a Xilinx Virtex2-6000-6 FPGA with

and without on-chip buffering.

percentage on the GPU (shown in Figure 9) lead to low ef-

ficiency on block transfer architectures compared with the

Pentium 4. The Pentium 4 performs the simulation 13 times

faster than the GPU and 57 times faster than the unoptimized

FPGA. FPGA performance is improved vastly by on-chip

buffering. Current progress in this area limits us to 8192

points but this will improve with time.

The weighted sum results show high performance for the

SSE-2 optimized Pentium 4. The algorithm is largely reg-

ister bound and hence highly efficient in a general purpose

processor. The block transfers harm the performance of the

FPGA and GPU greatly. PS2 vector units are closer to the

CPU and are therefore less affected by data transfer times,

and hence we achieve higher performance. We see that the

Pentium 4 with SSE only performs 28% faster than the non-

SSE Pentium, but 58 times faster than the FPGA.

7. CONCLUSIONS

Our work enables performance comparisons between FP-

GAs, graphics accelerators and PlayStation 2 vector units as

coprocessors using a single unified representation. We dis-

cuss how a single description can be beneficial, and demon-

strate one approach to achieving this goal using a stream

based compiler. The presence of a unified description offers

a direct route to comparison.

We notice that the performance of a single description

compiled to different architectures does not yield optimal

results for each of the target technologies. Nevertheless, we

obtain a fair starting point which we then refine to optimize
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for each individual technology. In a sense we combine tech-

nology evaluation and optimization in the same framework

with the result of increasing productivity. Optimizing a par-

tial - and tested - implementation is often easier than starting

from scratch, and there are often beneficial low level opti-

mizations that one can perform. Some optimizations, such

as the buffers demonstrated in this paper, are easily imple-

mented in our current system. The performance of FPGA

technology is particularly dependent on the amount of opti-

mization in a design. Support for much more low level opti-

mizations is clearly the ultimate challenge in this project.
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