
Optimal Implementation of Combinational Logic on
Look-up Tables

Kubilay Atasu, Tim Todman, Oskar Mencer and Wayne Luk
Department of Computing, Imperial College London
{kubilay.atasu,tjt97,o.mencer,w.luk}@imperial.ac.uk

Abstract— We present a methodology for optimally imple-
menting combinational logic equations on networks of look-up
tables. Our work effectively extends optimality to span logic
minimization and technology mapping. We restrict ourselves to
4-input look-up tables (LUTs) and enumerate all possible circuits
up to a certain area or latency. Since simple-minded enumeration
would take a long time, we develop levels of abstractions (steps)
and we formulate the key step of enumeration as an Integer
Linear Programming (ILP) problem. We show results on a set
of ISCAS benchmarks.

I. I NTRODUCTION

We address the problem of optimization of designs for
reconfigurable hardware. We use enumeration to optimize
logic. In principle, we enumerate every possible configuration
of a device. In practice, we simplify the enumeration to
only consider configurations and connections of look-up tables
(LUTs) on Field-Programmable Gate Array devices (FPGAs),
under area and latency constraints. For this paper, we only
consider combinatorial designs, including the state-transition
logic of finite state machines.

The traditional approach in logic synthesis for FPGAs is
based on two phases: technology independent optimization,
and technology mapping [5]. The first phase aims to generate
an optimal abstract representation of the logic circuit, a
Boolean network most of the time. The second phase tries
to transform the abstract representation into a network of
primitive logic functions implemented by the available library,
in our case 4-input look-up tables.

Although two level logic minimization can be done very
efficiently [6], finding the optimum factored form of a logic
function is a very complex problem, and existing methods for
the first phase are heuristic or approximate.

A large body of research efforts has concentrated on the
technology mapping problem for LUT-based FPGAs in the
last decade. An algorithm to find delay-optimal mappings was
described in [10]. On the other hand, it has been proven that
the problem of finding area-optimal mappings for LUTs of
input size four and greater is an NP-hard problem [7].

The early work on area minimization relied on decomposi-
tion of the circuit into a set of trees, and applied technology
mapping on tree structures [8], [9]. Although area mini-
mization on trees is much easily solvable, real circuits are
rarely trees and this approach misses optimal solutions across
tree boundaries. Cong et al. concentrated on enumeration of
single output, K-input connected subgraphs (fanout free cones)

Fig. 1. Our approach to enumeration. Step 2 differs for area (step 2a) and
latency (step 2b). In Steps 3 and 4, we use an ILP approach.

within the circuit, and proved that the problem can still be
optimally solved by decomposing the circuit into maximal
fanout free cones (MFFC), and enumerating separately on
each MFFC in [11]. The proposed algorithm although very
practical, had exponential worst case complexity, and restricted
the solution to duplication free mappings where each circuit
gate must be mapped to exactly one LUT. Later work by Cong
et al. [12] introduced heuristics to reduce the runtime, and
extended the approach to duplicable mappings.

More recent work, reformulating the technology mapping
problem as a boolean satisfiability problem, has shown that
state-of-the-art FPGA technology mapping algorithms miss
optimal solutions [13]. Enumeration guarantees that all solu-
tions are considered; one can obtain the absolute lower bound
of logic resources needed to implement a particular problem.

Little related work has been reported on using enumeration
for design optimization. A recent effort concerns an implicit
technique for enumerating structural choices in circuit opti-
mization based on re-wiring and re-substitution [14]. In [15],

LUT

LUT

LUT

LUT

LUT

LUT

n 1

n

(a) One Layer (a) Two Layers

1

Fig. 2. Examples of designs with one and two layers of LUTs.

a reconfigurable hardware implementation is proposed to ac-
celerate circuit enumeration. Our research differs from [14],
[15], since we use an ILP-based approach to implement the
key step of enumeration.

Our three main contributions in this paper are:

• Extending optimality to span logic minimization and
technology mapping.

• A 4-step process to enumerate all possible solutions.
• Implementation via software enumeration, and Integer

Linear Programming.

Our overall approach to enumeration is illustrated in Fig-
ure 1, showing how we break the problem into several steps:

Step 1 Given a boolean input function and an optimiza-
tion metric (area or latency), this step identifies observ-
able inputs and limits the search space.

Step 2 Enumerate all circuit shapes within the search
space from step 1, sort by (a) latency or (b) area,

Step 3 Enumerate all possible interconnections for each
shape,

Step 4 Enumerate all possible LUT configurations for
eachcircuit.

II. T HEORY

In this section we develop expressions for the upper bound
of the design space for enumeration, for each step of Figure 1.

We assume layers of LUTs (shapes) to realize a design,
and we enumerate different LUT configurations and intercon-
nections. Some possible shapes and internal connections for
enumerating a design is shown in Figure 3.

We assume that the truth table for an N-bit input, 1-bit
output function Y is given as in Table I. We assume that the
function has already been reduced so all of the inputs are
observable. Observability of an input can be computed using
Boolean derivative as defined in [4]. We enumerate designs
consisting of 4-bit LUTs (A 4-bit LUT has 4 inputs). We
assume that the circuit is composed ofH layers of LUTs,
where layerh is composed ofLh LUTs. We defineLtot as the
total number of LUTs contained in the design.

The design space for enumeration is large: a 4-bit LUT can
be configured in 22

4
ways. A logic function with 4 inputs can

Shape

(1)

(1,1)

(1,1,1)

(2,1)

(2,1,1)

Internal connection possibilities

Fig. 3. Some internal connection possibilities for severalshapes. Vertical
lines separate the layers. (Step 3)

0 1 ... i ... N-1 Y
0 0 0 0 0 0 y0
...

...
...

...
...

...
...

c0,t c1,t ... ci,t ... cN−1,t yt

...
...

...
...

...
...

...
1 1 1 1 1 1 y2N−1

TABLE I

TRUTH TABLE FOR AN N-BIT INPUT 1-BIT OUTPUT FUNCTION

be implemented with a single LUT. Logic functions with larger
number of inputs require multiple LUTs. We further refine
different steps of Figure 1 to handleN-input logic functions:

Step 1We identify observable inputs and index into Table II
to find the range of our design space with associated area and
latency requirements.

The maximum latency and area requirements are calculated
based on the following observations:

• a 4-input design can be implemented by a single LUT,
• an n + 1-input design can be implemented using two

n-input designs, and an additional LUT multiplexing
between the two using then+1th input.

The minimum area and latency requirements are calculated
based on the following observations:

• each observable design input must be connected to at least
one LUT input,

• at least one of the LUT inputs must be connected to a
LUT output at a previous layer,

• there is a single LUT at the highest layer.

Step 2 We find all shapesfor the range found in step 1
(See Table III). We sort the resulting list of shapes by latency
(if optimizing for latency, step 2a) or area (if optimizing for
area, step 2b). For example, to enumerate an 8-input design for
minimum area, we first choose the smallest topology that will
accept eight inputs: (2,1) in our terminology. If this fails, we

function optimize for latency optimize for area
#inputs min max min max

≤ 4 1 1 1 1
5 2 2 2 3
6 2 3 2 7
7 2 4 2 15
8 2 5 3 31
9 2 6 3 63

10 2 7 3 127
11 2 8 4 255
N log4(N) (N−3) ⌊(N+1)/3⌋ 2N−3−1

O(logN) O(N) O(N) O(2N)

TABLE II

LATENCY (MAXIMUM NUMBER OF LUTS FROM INPUTS TO OUTPUT) AND

AREA (NUMBER OF LUTS) FOR DIFFERING NUMBERS OF INPUTS. USER

INPUT TO OPTIMIZATION IS # INPUTS AND OPTIMIZATION MODE

(LATENCY OR AREA). (STEP 1)

Latency
1 2 3 4 5

Area
1 (1)
2 (1,1)
3 (2,1) (1,1,1)
4 (3,1) (2,1,1) (1,1,1,1)

(1,2,1)
5 (4,1) (3,1,1) (2,1,1,1) (1,1,1,1,1)

(1,3,1) (1,2,1,1)
(2,2,1) (1,1,2,1)

6 (4,1,1) (3,1,1,1) (2,1,1,1,1)
(3,2,1) (2,2,1,1) (1,2,1,1,1)
(2,3,1) (1,3,1,1) (1,1,2,1,1)
(1,4,1) (2,1,2,1) (1,1,1,2,1)

(1,2,2,1)
(1,1,3,1)

TABLE III

ALL THE DIFFERENT SHAPES FOR ONE TO FOUR4-LUTS, ARRANGED

ACCORDING TO LATENCY AND AREA. (STEP 2)

choose one of the next smallest designs, and so on. Similarly,
the minimum latency design can be found by iterating from
the minimum latency topology to the maximum.

Step 3We enumerate all interconnection possibilities. One
of the LUT inputs must be connected to a LUT output at a
previous layer. The remaining inputs may connect to the output
of any LUT in a previous layer, or to a design input.

Step 4For all graphs, we enumerate each configuration of
each LUT. ForLtot LUTs, this is 22

4∗Ltot .
The output of the final circuit must be identical to the N-bit

function output specified by a truth table for each input over
the input space of 2N (See Table I).

To make enumeration more tractable, we only consider
combinatorial designs (no registers or feedback) with single
output. Enumeration can still be applied to the combinatorial
parts of sequential designs. Multiple-output designs can still be
considered by generating separate hardware for each output,
followed by a common-subexpression elimination step to
eliminate LUT configurations and connections common to
several outputs.

This section has shown the size of the search space for
enumeration. The next section introduces our ILP formulation
to solve the LUT mapping problem exactly.

III. ENUMERATION USING ILP

We describe an Integer Linear Programming formulation to
achieve Steps 3 and 4 together. The ILP formulation checks
if there exists a feasible circuit given a shape from Step 2.

We define a binary decision variableXh,l ,k,i which represents
whether inputi is connected to thekth input of thel th LUT
at layerh. More formally:

Xh,l ,k,i =











1 if input i is connected to the kth input

of the lth LUT at layer h

0 otherwise
h∈ {0..H −1} , l ∈ {0..Lh−1} ,k∈ {0..3} , i ∈ {0..N−1}

(1)
We define a binary decision variableXOUTh,l ,k,hi,li which

represents whether output of theli th LUT at layer hi is
connected to thekth input of thel th LUT at layerh:

XOUTh,l ,k,hi,li ∈ {0,1} ,hi ∈ {0..h−1}, li ∈ {0..Lhi −1}
(2)

We associate a binary decision variable with each config-
uration bit of each LUT. For LUTl of layer h, we need to
define 2K new decision variables:

LUTh,l , j ∈ {0,1} , j ∈
{

0..2K −1
}

(3)

We associate a binary decision variable with each LUT
output. The output of LUTl of layerh at timet is represented
asOUTh,l ,t :

OUTh,l ,t ∈ {0,1} ,t ∈
{

0..2N−1
}

(4)

Each LUT input must be connected to exactly one function
input or one LUT output at a lower layer:

∑i∈{0..N−1} (Xh,l ,k,i)+

∑hi∈{0..h−1}∑li∈{0..Lhi−1} (XOUTh,l ,k,hi,li) = 1
(5)

We define a new binary decision variableZh,l ,k,t which stores
the value assigned to thekth input of thel th LUT at layerh
at time t:

Zh,l ,k,t = ∑
i∈{0..N−1}

(Xh,l ,k,i ∧ci,t)+

∑
hi∈{0..h−1}

∑
li∈{0..Lhi−1}

(XOUTh,l ,k,hi,li ∧OUThi,li ,t)

(6)
We calculate the output of thel th LUT at layerh at time t

as follows:

OUTh,l ,t =































(Zh,l ,0,t ∧Zh,l ,1,t ∧Zh,l ,2,t ∧Zh,l ,3,t ∧LUTh,l ,0)∨

(Zh,l ,0,t ∧Zh,l ,1,t ∧Zh,l ,2,t ∧Zh,l ,3,t ∧LUTh,l ,1)∨
...

(Zh,l ,0,t ∧Zh,l ,1,t ∧Zh,l ,2,t ∧Zh,l ,3,t ∧LUTh,l ,2K−2)∨

(Zh,l ,0,t ∧Zh,l ,1,t ∧Zh,l ,2,t ∧Zh,l ,3,t ∧LUTh,l ,2K−1)
(7)

The output of the highest layer LUT must be identical to the
N-bit function output for the same set of inputs. The optimal
solution returns an objective value equal to zero if and only
if a circuit implementing the given functionality is found:

min ∑
t∈{0..2K−1}

|yt −OUTH−1,0,t | (8)

IV. RESULTS AND EVALUATION

Our tool chain starts with the truth table specification of
a given logic function. We traverse Table III columnwise or
rowwise depending on the optimization mode (latency or area
respectively). For each shape we automatically generate the as-
sociated ILP problem, and solve using CPLEX Mixed Integer
Optimizer [16]. The process is continued until a feasible circuit
implementing the given function is found. Once a circuit is
found, we automatically generate the hardware description
in ASC [17], explicitly specifying the LUT configurations
and interconnections to be mapped onto an actual FPGA.
Additionally, for each circuit, we automatically generatea
testbench, and simulate for the set of inputs specified in the
truth table, comparing the result with the expected output.In
this way we verify the correctness of the circuits we generate.

We have applied our algorithms on a set of ISCAS bench-
marks shown in Table IV. The benchmarks describe circuits
with multiple inputs and outputs. Most of the time an output
is sensitive to changes in a subset of the inputs only (i.e.,
observable inputs). Therefore only a subset of the circuit
inputs have to be considered during enumeration. The shapes
automatically identified for the benchmarks, together withthe
execution time of the ILP solver are given in in the last
two columns of Table IV. In all cases, where ILP completed
successfully, only two LUTs (i.e., a shape of (1,1)) were
sufficient to realize the output functions. We have observed
that the number of constraints increased quickly with the
number of inputs, and ILP did not complete within 24 hours
in two of the cases.

V. CONCLUSION

We have described an enumeration approach for identifying
optimal combinational circuit implementations on networks
of look-up tables. We divide the enumeration into steps that
enable efficient exploration of the search space. We explore
different circuit topologies (shapes) in the order of latency or
area, depending on the optimisation mode. We make use of
the existing ILP technology [16] to carry out the key step of
enumeration, where we identify whether a chosen shape is
feasible for implementing a given logic function.

Our current and future work involves improving the speed
of enumeration for the optimization of larger logic functions.
In particular, we are exploring more efficient ILP formulations
that can better exploit symmetries within a circuit. Addition-
ally, we are planning to evaluate the performance of hybrid
techniques that combine software enumeration, hardware enu-
meration [15], and ILP.

Name #Inps Output #Obs.Inps Shape Run-time
c17 5 1 4 (1,1) 0 s

2 4 (1,1) 0 s
s27 7 1 6 - -

2 5 (1,1) 42 s
3 6 - -
4 3 (1,1) 0 s

b01 7 1 1 (1,1) 0 s
2 1 (1,1) 0 s
3 3 (1,1) 0 s
4 5 (1,1) 17397 s
5 5 (1,1) 972 s
6 5 (1,1) 1120 s
7 5 (1,1) 156 s

b02 5 1 2 (1,1) 0 s
2 3 (1,1) 0 s
3 4 (1,1) 0 s
4 4 (1,1) 0 s
5 4 (1,1) 0 s

TABLE IV

RESULTS FOR A SET OFISCASBENCHMARKS. RUN-TIMES ARE GIVEN IN

SECONDS. ILP DID NOT COMPLETE IN TWO OF THE CASES.

REFERENCES

[1] D. E. Knuth, “A Draft of Section 7.2.1.3: Generating All Combinations”,
The Art of Computer Programming: Pre-Fascicle 3A, 2005

[2] R. L. Graham, D. E. Knuth, O. Patashnik,Concrete Mathematics: A
Foundation for Computer Science, Addison-Wesley, 1989.

[3] S. J. Russell and P. Norvig,Artificial Intelligence: A Modern Approach,
Prentice Hall, 1995.

[4] G. De Micheli,Synthesis and Optimisation of Digital Circuits, McGraw-
Hill, 1994.

[5] A. Sangiovanni-Vincentelli, A. El Gamal, and J. Rose. “Synthesis
methods for field programmable gate arrays”. Proceedings ofIEEE, pp.
1057–1083, July 1993.

[6] R. K. Brayton, C. McMullen, G. D. Hachtel, and A. Sangiovanni-
Vincentelli. “Logic Minimization Algorithms for VLSI Synthesis”.
Kluwer Academic Publishers, 1984.

[7] A. Farrahi, and M. Sarrafzadeh. “Complexity of the Lookup-Table
Minimization Problem for FPGA Technology Mapping”. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
13(11):1319–1332, 1994.

[8] K. Keutzer. “DAGON: Technology Binding and Local Optimization by
DAG Matching”. In DAC 1987, pp. 341–347.

[9] R. Francis, J. Rose, and Z. Vranesic. “Chortle-crf: FastTechnology
Mapping for Lookup Table-Based FPGAs”. In DAC 1991, pp. 227–233.

[10] J. Cong and Y. Ding. “An Optimal Technology Mapping Algorithm for
Delay optimization in Lookup-Table Based FPGA Designs”. InIEEE
ICCAD, 1992.

[11] J. Cong, and Y. Ding. “On area/depth trade-off in LUT-based FPGA
technology mapping”. In DAC 1993, pp. 213–218.

[12] J. Cong, C. Wu, and Y. Ding. “Cut ranking and pruning: enabling a
general and efficient FPGA mapping solution”. In FPGA 1999, pp. 29–
35.

[13] A. Ling, D. P. Singh and S. P. Brown, “FPGA Technology Mapping: A
Study of Optimality”, In DAC 2005.

[14] V. N. Kravets and P. Kudva, “Implicit Enumeration of Structural Changes
in Circuit Optimization”, In DAC 2004, pp. 438–441.

[15] T. Todman, H. Fu, O. Mencer, and W. Luk. “Improving Bounds for
FPGA Logic Minimization”. In FPT 2007, pp. 245–248.

[16] ILOG CPLEX. http://www.ilog.com/products/cplex/
[17] O. Mencer, “ASC, A Stream Compiler for Computing with FPGAs”

IEEE Transactions on CAD, IEEE, 2006.

