
Fast Custom Instruction Identification by Convex Subgraph Enumeration

Kubilay Atasu, Oskar Mencer, Wayne Luk
Department of Computing, Imperial College London

{atasu,oskar,wl}@doc.ic.ac.uk

Can Özturan
Department of Computer Engineering

Bogazici University, Istanbul
ozturaca@boun.edu.tr

Günhan Dündar
Department of Electrical and Electronics Engineering

Bogazici University, Istanbul
dundar@boun.edu.tr

Abstract

Automatic generation of custom instruction processors
from high-level application descriptions enables fast design
space exploration, while offering very favorable perfor-
mance and silicon area combinations. This work introduces
a novel method for adapting the instruction set to match an
application captured in a high-level language. A simplified
model is used to find the optimal instructions via enumera-
tion of maximal convex subgraphs of application data flow
graphs (DFGs). Our experiments involving a set of multi-
media and cryptography benchmarks show that an order of
magnitude performance improvement can be achieved us-
ing only a limited amount of hardware resources. In most
cases, our algorithm takes less than a second to execute.

1 Introduction

Combining programmability and efficiency, custom in-
struction processors are emerging as basic building blocks
in the design of complex systems-on-chip. Typically, a base
processor is extended with custom functional units that im-
plement application-specific instructions. A dedicated link
between custom functional units and the base processor pro-
vides an efficient communication interface. Re-using a pre-
verified, pre-optimized base processor reduces design com-
plexity and time to market. Commercial examples include
Tensilica Xtensa, ARC 700, Altera Nios II, MIPS Pro Se-
ries, Xilinx MicroBlaze, and Stretch S6000.

Techniques for the automated synthesis of custom in-
structions from high level application descriptions have re-
ceived considerable attention in the recent years. The typi-
cal approach limited the maximum number of input and out-
put operands of custom instructions can have to the avail-
able register file ports [6, 9, 16]. Although these constraints

can be prohibitive on some architectures, most existing cus-
tomizable processors (such as Tensilica Xtensa) allow cus-
tom instructions to have more input and out operands than
the available register file ports through custom state reg-
isters that can temporarily hold some of the operands. In
fact, recent work shows that input/output constraints de-
teriorate the solution quality on architectures where there
is no explicit limit on the number of custom instruction
operands [4, 12, 13, 15]. Thus, there is a need for new algo-
rithms that can efficiently explore custom instruction candi-
dates within application DFGs without imposing a limit on
the number of input and output operands.

In this work, we develop an efficient subgraph enumer-
ation approach for the automated identification of custom
instructions. Similar to the work of Pothineni [12] and the
work of Verma [15], we enumerate only convex subgraphs
of application DFGs that are maximal, imposing no con-
straints on the number of input and output operands for cus-
tom instructions. Our main contributions in this work are:

1. a tight upper bound on the number of maximal convex
subgraphs within a given DFG (Section 3, 4);

2. a novel maximal convex subgraph enumeration algo-
rithm for custom instruction synthesis (Section 5, 6);

3. demonstration of the scalability of our algorithm on
a set of benchmarks, which can achieve an order of
magnitude speed-up with respect to a single issue base
processor (Section 7).

2 Related Work

Most of the early work and some of the recent work [8,
14] in automated instruction-set customization relied on
heuristic clustering of related DFG nodes. Gradually, the
attention shifted towards closer to optimal solutions, such
as subgraph enumeration [6, 7, 9, 16] and integer linear pro-
gramming (ILP) [5, 11]. All of these approaches assumed

constraints on the number of input and output operands for
custom instructions. In particular, subgraph enumeration
based approaches explicitly make use of the input/output
constraints to prune the search space and reduce the expo-
nential computational complexity. It was recently shown
that ILP based techniques [4] scaled well with the relaxation
of the input/output constraints. However, subgraph enumer-
ation based approaches become intractable, as the compu-
tational complexity grows exponentially with the relaxation
of the input/output constraints. In fact, recent work [7]
showed that the worst case time complexity of enumerat-
ing subgraphs having Nin input and Nout output operands
in a DFG with N nodes is O(NNin+Nout+1).

Pothineni et al. [12] targeted the maximal convex sub-
graph enumeration problem. Given a DFG, Pothineni et al.
first define an incompatibility graph, where the edges repre-
sent pairwise incompatibilities between DFG nodes. Poth-
ineni et al. define the ancestors and the descendants of an
invalid node as incompatible. A node clustering step identi-
fies groupwise incompatibilities and reduces the size of the
incompatibility graph. The incompatibility graph represen-
tation allowed Pothineni et al. to formulate the maximal
convex subgraph enumeration problem as a maximal inde-
pendent set enumeration problem. Pothineni et al. indicate
that the complexity of enumeration is O(2NC), where NC

represents the number of nodes in the incompatibility graph.
Verma et al. [15] used maximal clique enumeration in-

stead of maximal independent set enumeration. However,
the two problems can be directly transformed into each
other (see for example, Garey and Johnson [10, p.54]).
Therefore, the approach of Verma et al. [15] and the ap-
proach of Pothineni et al. [12] are essentially the same.

3 Problem Formulation

We assume that the source program is converted into
an intermediate representation (IR), where every statement
in the IR is a branch, or an assignment with at most two
source operands and one destination operand. We represent
an application basic block as a DFG G (Vb, Eb) where the
nodes Vb represent statements within the basic block, and
the edges Eb represent flow dependencies between nodes.

The subset V f
b ⊆ Vb represent forbidden statements in

G that cannot be included in custom instructions, either be-
cause of the limitations of the custom processor architec-
ture, or because of the limitations of the custom datapath,
or by the choice of the designer.

A custom instruction candidate is a subgraph of G in-
duced by a set of nodes Vs ⊆ Vb/V f

b . A subgraph S is
convex if there exists no path in G from a node u ∈ Vs to
another node w ∈ Vs which involves a node v /∈ Vs. The
convexity constraint is imposed on the subgraphs to ensure
that no cyclic dependency is introduced in G and that a fea-
sible schedule can be achieved for the instruction stream.

Figure 1. A subgraph that is not convex.

Figure 1 depicts an example subgraph that is not convex.
We associate with every graph node vi ∈ Vb a binary

variable xi that represents whether the node is included in
the subgraph (xi = 1 ⇔ vi ∈ Vs) or not (xi = 0 ⇔
vi /∈ Vs). We use x′

i to denote the complement of xi (x′
i =

1 − xi). For vi ∈ V f
b we set xi = 0. In this way, it is

possible to encode all 2|Vb/V f
b | valid subgraphs in G.

In this work, we assume a generic and simple optimiza-
tion model for custom instruction identification. We repre-
sent our problem using the following indices:

I1 : indices for nodes vi ∈ V f
b

I2 : indices for nodes vi ∈ Vb/V f
b

We associate with every graph node vi ∈ Vb a software
latency si ∈ Z+, which gives the time in clock cycles that
it takes to execute vi on the pipeline of the base processor.
The objective of optimization is to identify the subgraph S
with the maximum accumulated software latency:

max
∑
i∈I2

(sixi). (1)

4 An Upper Bound on the Search Space Size

Definition 1. A convex subgraph S is maximal if it cannot
be grown further by including additional nodes from Vb/Vs.

In this Section, we are going to show that the number of

maximal convex subgraphs in G is bounded by 2|V f
b |.

Remark 1. A subgraph S is convex if and only if there
exists no node in Vb/Vs having both an ancestor and a de-
scendant in Vs.

For each node vi ∈ Vb we introduce two binary vari-
ables: ai represents whether vi has an ancestor in S (ai = 1)
or not (ai = 0), and di represents whether vi has a descen-
dant in S (di = 1) or not (di = 0). Based on Remark 1, the
convexity property can be formulated as follows:

ai ∧ di = 0, i ∈ I1, (2)

x′
i ∧ ai ∧ di = 0, i ∈ I2. (3)

Theorem 1. A maximal subgraph that satisfies Equation
(2), satisfies also Equation (3).

Proof. Assume that Equation (2) holds for subgraph S, i.e.,
no node in V f

b has both an ancestor and a descendant in Vs.
Assume also that S is maximal, i.e., no additional node can
be included in Vs without violating Equation (2). We are
going to show that S satisfies Equation (3), as well.

Suppose that a node vi ∈ Vb/(Vs∪V f
b) violates Equation

(3), i.e., vi has both an ancestor and a descendant in Vs. We
are going to show that including vi in Vs does not violate
Equation (2).

In a convex solution, there exist three possible choices
for each vf ∈ V f

b :

• vf has ancestors, but no descendants in Vs. In this
case, we know that vi cannot be a descendant of vf . If
vi was a descendant of vf , vf would have descendants
in Vs, since vi has descendants in Vs. Because vi is not
a descendant of vf , including vi in Vs does not violate
Equation (2).

• vf has descendants, but no ancestors in Vs. In this
case, we know that vi cannot be an ancestor of vf . If
vi was an ancestor of vf , vf would have ancestors in
Vs, since vi has ancestors in Vs. Because vi is not
an ancestor of vf , including vi in Vs does not violate
Equation (2).

• vf has neither ancestors nor descendants in Vs. In
this case, we know that vi is neither an ancestor nor a
descendant of vf . Otherwise vf would have ancestors
or descendants in Vs. As a result, including vi in Vs

does not violate Equation (2).

We have shown that if there exists a vi ∈ Vb/(Vs ∪ V f
b)

that violates Equation (3), we can safely include it in Vs

without violating Equation (2). However, this contradicts
with the maximality of S.

Therefore, a vi ∈ Vb/V f
b that violates Equation (3) can-

not exist in the maximal S satisfying Equation (2).

Corollary 1. The maximal subgraph S that satisfies Equa-
tion (2) is a maximal convex subgraph.

We note that there exists only three valid aj , dj choices
for a vj ∈ V f

b : (1) aj = 1, dj = 0; (2) aj = 0, dj = 1; (3)
aj = 0, dj = 0. The third choice can be disregarded, since
the maximal S would include as many nodes as possible
and only the first and the second choices can improve the
size of S. We note that the case where a node vj ∈ V f

b has
neither an ancestor nor a descendant in S can still occur (a)
if we choose aj = 1, dj = 0 and none of the ancestors of
vj can be included in the solution either by the properties of
the G or because all of the ancestors of vj are prohibited by
the choices made for the remaining forbidden nodes; (b) if
we choose aj = 0, dj = 1 and none of the descendants of
vj can be included in the solution either by the properties of

G or because all of the descendants of vj are prohibited by
the choices made for the remaining forbidden nodes.

Given a valid aj , dj combination for j ∈ I1, the associ-
ated maximal convex subgraph can be found as follows:

• A node vi ∈ Vb/V f
b cannot be included in S if it has

an ancestor vj ∈ V f
b for which an ancestor exists in S

(aj = 1). Otherwise, vj would have both an ancestor
and a descendant in S.

• A node vi ∈ Vb/V f
b cannot be included in S if it does

not have a descendant vj ∈ V f
b for which a descendant

exists in S (dj = 1).

• All the remaining nodes in Vb/V f
b can be safely in-

cluded in S without violating Equation (2).

Corollary 2. Every valid aj , dj combination for vj ∈ V f
b

defines a maximal convex subgraph.

We introduce the following notation to represent the set
of ancestors, and the set of descendants of the nodes in
Vb/V f

b that are in V f
b :

Anc(i ∈ I2) = {j ∈ I1 | There exists a path from vj to vi}
Desc(i ∈ I2) = {j ∈ I1 | There exists a path from vi to vj}

Once aj and dj values are fixed for the nodes vj ∈ V f
b ,

whether a node vi ∈ Vb/V f
b is part of the maximal subgraph

S can be found as follows:

xi =




1 if Anc(i) = Desc(i) = ∅(∧
j∈Anc(i) a′

j

)
if Desc(i) = ∅

(∧
j∈Desc(i) d′j

)
if Anc(i) = ∅

(∧
j∈Anc(i) a′

j

)
∧

(∧
j∈Desc(i) d′j

)
Otherwise

(4)
For each vj ∈ V f

b , it is sufficient to evaluate two pos-
sible choices (i.e., aj = 1, dj = 0 or aj = 0, dj = 1).
Each choice is associated with a single maximal solution S,
which can be inferred directly using Equation (4).

Corollary 3. There exists an upper bound of 2|V
f

b | on the
number of maximal convex subgraphs.

Figure 2 depicts an example DFG. The nodes v4 and v5

are forbidden nodes. Because there exists only two for-
bidden nodes, there exists only 22 = 4 possible choices
we need to consider: (1) ancestors of v4 and ancestors of
v5 can take part in the solution (a4 = 1, d4 = 0 and
a5 = 1, d5 = 0); (2) ancestors of v4 and descendants
of v5 can take part in the solution (a4 = 1, d4 = 0 and
a5 = 0, d5 = 1); (3) descendants of v4 and ancestors
of v5 can take part in the solution (a4 = 0, d4 = 1 and
a5 = 1, d5 = 0); (4) descendants of v4 and descendants
of v5 can take part in the solution (a4 = 0, d4 = 1 and

Figure 2. v4 and v5 are forbidden nodes.

Table 1. Solutions for the DFG of Figure 2
(a4, d4) (a5, d5) Solution

(1,0) (1,0) {v1, v2, v3, v9, v10}
(1,0) (0,1) {v1, v8, v9, v10}
(0,1) (1,0) {v3, v6, v9, v10}
(0,1) (0,1) {v6, v7, v8, v9, v10}

Figure 3. Pothineni’s Incompatibility graph.

a5 = 0, d5 = 1). Table 1 shows the solutions associated
with each of these these four choices.

Figure 3 shows the incompatibility graph generated by
Pothineni’s algorithm [12] for the DFG of Figure 2. The
incompatibility graph contains seven nodes. According to
Pothineni’s work, the worst case complexity of maximal
convex subgraph enumeration for this graph is 27. On the
other hand, we have shown that it is possible to enumerate
all maximal convex subgraphs in the DFG in only 22 steps.

5 A Novel Enumeration Algorithm

We have shown in Section 4 that there exists an upper

bound of 2|V f
b | on the number of maximal convex sub-

graphs given a graph with
∣∣∣V f

b

∣∣∣ forbidden nodes. Therefore,

the time complexity of the maximal convex subgraph enu-
meration algorithms should not have an exponential factor

higher than 2|V f
b |. In this section, we describe a novel enu-

meration algorithm that further reduces the execution time.
Similar to the work of Pothineni et al. [12] and the

work of Verma et al. [15], we firs apply a node cluster-
ing step that reduces the size of the DFG, and the number
of forbidden nodes. In particular, if vi, vj ∈ Vb/V f

b and

Figure 4. Connectivity of forbidden nodes.

Anc(i) = Anc(j) and Desc(i) = Desc(j), we can cluster
the nodes vi and vj together, without affecting the result of
enumeration, since Equation (4) guarantees that xi and xj

will always be the same. Similarly, if two forbidden nodes
vi, vj ∈ V f

b have the same set of ancestors and descendants
that are in Vb/V f

b , we can cluster the two as a single forbid-
den node without affecting the optimality.

In order to demonstrate further ways of reducing the
complexity, we construct a new graph G′ from G, where
the nodes of G′ represent the forbidden nodes of G. We
introduce a directed edge between two forbidden nodes
vi, vj ∈ V f

b in G′ only if there is a path from vi to vj in
the original graph G. Figure 4 illustrates a simple graph G′.

Assume that we set d1 = 0 in Figure 4. This disables in-
clusion of any node that is a descendant of v1 in the solution.
Therefore, we can set di = 0 for all forbidden nodes that are
descendants of v1 (i.e., d2 = d3 = d4 = 0). Thus, in prac-
tice, the number of possible di combinations for vi ∈ V f

b

(where ai = 1−di always) is much smaller than 2|V f
b |. We

exploit this property in order to design a simple and efficient
algorithm for maximal convex subgraph enumeration.

Figure 5 shows the pseudo-code of our algorithm. We
first apply a node clustering step on G. Next we derive G′

from the clustered graph. After that, we order the nodes of
G′ topologically, such that if there is a path from vi to vj in
G′, vi is associated with a lower index value than vj . Our
algorithm generates combinations of di values. We note
that each combination in turn, is associated with a maximal
convex subgraph that can be derived using Equation (4).

6 Overall Approach

Once enumeration of all maximal convex subgraphs
within a basic block is complete, we first pick the maximum
convex subgraph as the most promising custom instruction
candidate. After that we prune the maximal convex sub-
graphs (1) that overlap with the chosen subgraph, (2) that
are cyclicly dependent with the chosen subgraph. Again we
pick the largest one among the remaining maximal convex
subgraphs, and we continue the same process until no more
profitable maximal convex subgraphs can be found.

We apply the same procedure on all application basic
blocks, and generate a unified set of subgraphs. After that,
we group structurally equivalent subgraphs that can be im-

1: ALGORITHM: search(index, choice, graph)
2: curent combination[index] = choice;
3: if index == num nodes in graph-1 then
4: store current combination;
5: return;
6: end if
7: if choice == 0 then
8: ensure that all descendants of index in graph are disabled;
9: end if

10: index=index+1;
11: search(index, 0, graph);
12: if index is not disabled then
13: search(index, 1, graph);
14: end if
15: if choice == 0 then
16: ensure that the disabled descendants are again enabled;
17: end if
18: ALGORITHM: enumerate()
19: Apply node clustering on G;
20: Generate G′from the clustered graph;
21: Topologically sort the nodes of G′;
22: search(0, 0, G′);
23: search(0, 1, G′);

Figure 5. Enumeration Algorithm.

plemented using the same hardware. We estimate the soft-
ware execution latency Z(S) of a subgraph S by scheduling
the subgraph in software under base processor resource con-
straints. We obtain the hardware execution latency H(S) of
S through hardware synthesis using Synopsys Design Com-
piler. We estimate the communication latency C(S) of S by
calculating the number of cycles required to transfer its in-
put and output operands under register file port constraints,
in a similar way as described in [4]. Given the frequency of
execution F (S) of the subgraph S, we estimate the amount
of reduction in the schedule length of the application by
moving S from software to hardware as follows:

F (S) ∗ (Z(S) − H(S) − C(S)). (5)

Finally, we obtain the area costs of subgraphs using Syn-
opsys synthesis, and we choose the most promising sub-
graphs under area constraints using a Knapsack model [8].

7 Experiments and Results

We integrated our algorithms into Trimaran compiler [3].
We marked the memory access and branch instructions as
forbidden instructions. We applied our algorithms on eight
benchmarks from multimedia and cryptography domains.

We carried out our experiments on an Intel Pentium 4
3.2-GHz workstation with 1-GB main memory, running
Linux. We developed our algorithms in C/C++ and com-
piled with gcc-3.4.3 using -O2 optimization flag.

In Table 2, we compare the run-time of our enumera-
tion algorithm with an ILP based approach [4], using both
a commercial solver (CS) [1] and a public domain solver

Table 2. Run-time comparison (in seconds).

Bench. |Vb| |V f
b | Our work CS PDS

AES 357 43 24s 0.18s 2.1s
DES 822 176 0.15s 11s 307s
SHA 1155 90 0.02s 0.20s 26s
mpeg2enc 520 208 0.008s 2.28s 643s
idea 96 8 0.0008s 0.03s 0.33s
djpeg 92 19 0.0003s 0.025s 0.14s
rawcaudio 54 8 0.0002s 0.03s 0.24s
rawdaudio 45 8 0.0002s 0.02s 0.14s

(PDS) [2]. The second and the third columns of Table 2
show the number of nodes and the number of forbidden
nodes respectively, in the largest basic block of each bench-
mark. The run-time of our algorithm for identifying the
maximum convex subgraph within the largest basic block
is given in the fourth column. The remaining two columns
show the respective ILP results using CS and PDS.

We observe that except for AES encryption, our ap-
proach is at least an order of magnitude faster than the
ILP based approach. The advantage of using our tech-
nique is more evident when PDS is used instead of CS. In
fact, CS [1] can automatically recognize constraint patterns
that correspond to maximum independent set and maxi-
mum clique problems and includes efficient solvers targeted
specifically for these problems. We observe that in the case
of AES, ILP based approach is faster than ours even if PDS
is used. This is also possible. We note that, ILP solvers can
reduce the search space not only based on the constraints,
but also based on the definition of the objective function.

The only run-time result provided by Verma et al. [15] is
for AES, which is reported to be around 30 seconds. Poth-
ineni et al. [12], on the other hand, report a run-time of two
seconds for DES. Although we have not implemented these
two techniques, our work appears to be faster for AES and
DES. We note that other existing subgraph enumeration al-
gorithms [6, 7, 16] do not scale well with the relaxation of
input/output constraints, and fail to identify the maximum
convex subgraphs in several hours given benchmarks with
very large basic blocks, such as AES and DES.

Using Trimaran framework, we defined a single issue
base processor that implements an instruction-set similar to
MIPS IV instruction-set. We synthesized the custom in-
structions to UMC’s 130nm standard cell library using Syn-
opsys Design Compiler. We note that our custom instruc-
tions are pipelined in order not to increase the cycle time
of the base processor, which we estimated to be around the
critical path delay of a 32-bit carry propagate adder.

Figure 6 shows the speed-up results we obtain using cus-
tom instructions with respect to the base processor on our
benchmarks. Assuming a base processor register file with
32 32-bit registers, we evaluate four register file read and
write port combinations: (2,1), (2,2), (4,2), and (4,4). We

Figure 6. Additional ports improve speed-up.

observe that increasing the number of read and write ports
supplied by the register file, decreases the communication
overhead of the custom instructions, which improves the
speed-up. Finally, above each column, we show the cell
area for the associated custom datapath in terms of µm2.
We note that, we have observed marginal difference in our
speed-up results compared with the ILP based approach [4].

Figure 7 shows the most promising custom instruction
our algorithms identify from the DES C code. The soft-
ware implementation fully unrolls DES round transforma-
tions within a single basic block, which consists of 822 base
processor instructions. The custom instruction implements
the combinational logic between the memory access lay-
ers of two consecutive DES rounds. We note that X and Y
represent the DES encryption state. Eight of the inputs of
the custom instruction are static look-up table entries (SBs),
and two of the inputs (SK1,SK2) contain the DES round
key. Accordingly, eight of the outputs contain the addresses
of the look-up table entries that should be fetched for the
next round. We observe that the size of the look-up tables is
rather small (256 bytes only). We could avoid all the related
main memory accesses and address calculations by embed-
ding the eight look-up tables in local memories. Similarly,
the DES scheduled key is only 32 bytes wide, and can be
embedded in local memories, again eliminating a number
of main memory accesses. Once these optimizations are
done, the size of the core basic block of DES drops from
822 instructions into only 22 instructions, which incorpo-
rate only three different types of custom instructions, each
one having only a single cycle execution latency. The result
is about 30 times improvement in the performance of DES.

8 Summary

This paper provides novel theoretical and practical re-
sults for improving efficiency of automatically-generated
custom instruction processors and their design. Current and
future work includes extending our approach to cover addi-
tional application domains, and to support implementations
targeting field-programmable devices.

Figure 7. Custom instruction for DES.

References

[1] Ilog cplex. http://www.ilog.com/products/cplex/.
[2] lpsolve. http://sourceforge.net/projects/lpsolve.
[3] Trimaran. http://www.trimaran.org.
[4] K. Atasu et al. Optimizing instruction-set extensible pro-

cessors under data bandwidth constraints. In DATE, pages
588–593, Nice, France, Apr. 2007.

[5] K. Atasu, G. Dündar, and C. Özturan. An integer linear
programming approach for identifying instruction-set exten-
sions. In CODES+ISSS 2005, Jersey City, NJ, Sept. 2005.

[6] K. Atasu, L. Pozzi, and P. Ienne. Automatic application-
specific instruction-set extensions under microarchitectural
constraints. In 40th DAC, Anaheim, CA, June 2003.

[7] P. Bonzini and L. Pozzi. Polynomial-time subgraph enu-
meration for automated instruction set extension. In DATE,
pages 1331–1336, Nice, France, Apr. 2007.

[8] N. Clark, H. Zhong, and S. Mahlke. Processor acceleration
through automated instruction set customization. In MICRO,
San Diego, CA, Dec. 2003.

[9] J. Cong, Y. Fan, G. Han, and Z. Zhang. Application-specific
instruction generation for configurable processor architec-
tures. In FPGA 2004, Monterey, CA, Feb. 2004.

[10] R. M. Garey and D. S. Johnson. Computers and Intractabil-
ity; A Guide to the Theory of NP-Completeness. W. H. Free-
man and Co., New York, 1979.

[11] R. Leupers et al. A design flow for configurable embedded
processors based on optimized instruction set extension syn-
thesis. In DATE 2006, Munich, Germany, Mar. 2006.

[12] N. Pothineni, A. Kumar, and K. Paul. Application specific
datapath with distributed I/O functional units. In VLSI De-
sign, pages 551–558, Hyderabad, India, Jan. 2007.

[13] L. Pozzi and P. Ienne. Exploiting pipelining to relax register-
file port constraints of instruction-set extensions. In CASES
2005, San Francisco, CA, Sept. 2005.

[14] F. Sun, S. Ravi, A. Raghunathan, and N. Jha. A scalable
application-specific processor synthesis methodology. In
ICCAD, pages 283–290, San Jose, CA, Nov. 2003.

[15] A. K. Verma, P. Brisk, and P. Ienne. Rethinking custom ise
identification: A new processor-agnostic method. In CASES,
pages 125–134, Salzburg, Austria, Sept. 2007.

[16] P. Yu and T. Mitra. Scalable custom instructions identifi-
cation for instruction-set extensible processors. In CASES
2004, Washington, DC, Sept. 2004.

