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Abstract

We present a methodology for generating optimized ar-
chitectures for data bandwidth constrained extensible pro-
cessors. We describe a scalable Integer Linear Program-
ming (ILP) formulation, that extracts the most profitable set
of instruction-set extensions given the available data band-
width and transfer latency. Unlike previous approaches,
we differentiate between number of inputs and outputs for
instruction-set extensions and the number of register file
ports. This differentiation makes our approach applica-
ble to architectures that include architecturally visible state
registers and dedicated data transfer channels. We support
a comprehensive design space exploration to characterize
the area/performance trade-offs for various applications.
We evaluate our approach using actual ASIC implementa-
tions to demonstrate that our automatically customized pro-
cessors meet timing within the target silicon area. For an
embedded processor with only two register read ports and
one register write port, we obtain up to 4.3× speed-up with
extensions incurring only a 35% area overhead.

1 Introduction

Application-specific instruction-set processors (ASIPs)
provide a compromise between custom designs and general-
purpose processors. A base processor with a basic in-
struction set is augmented with custom functional units
that implement application-specific instruction-set exten-
sions. The control-flow within the application is directed
by the base processor, whereas computation intensive re-
gions are implemented as custom logic. A dedicated link
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between custom logic and the base processor provides an
efficient communication interface. Re-using a pre-verified,
pre-optimized base processor reduces the design complex-
ity, and the time to market. Several commercial examples
exist, such as Tensilica Xtensa, Altera NiosII, Xilinx Mi-
croBlaze, ARC 600/700, and MIPS Pro Series.

In this work, we apply formal optimization techniques
to generate instruction-set extensions from C code. We
target architectures, such as Tensilica Xtensa, where the
data bandwidth between the base processor and the cus-
tom logic is constrained by the available register file ports
(see Figure 1). Our approach is also applicable to archi-
tectures where the data bandwidth is limited by dedicated
data transfer channels, such as the Fast Simplex Link chan-
nels of Xilinx MicroBlaze processor. Given the available
data bandwidth and transfer latencies, our approach identi-
fies the most-profitable instruction-set extensions based on
a scalable Integer Linear Programming (ILP) model. We ex-
plicitly consider the data transfer overhead when generating
and evaluating instruction-set extensions. We demonstrate
that our automatically customized processors meet timing
within the target silicon area using ASIC synthesis results.

Our main contributions in this work are:

1. We provide an ILP model which replaces the in-
put/output abstraction of the previous approaches [5,
6, 7, 10, 15] with the actual data bandwidth constraints
and data transfer costs.

2. We integrate our technique into an optimizing com-
piler that generates custom ASIC processor implemen-
tations from C code.

3. We consider silicon cell area as a primary constraint,
and we explore the impact of different area constraints
on the number of execution cycles and cycle time.



Figure 1. Datapath of the instruction-set extensible
processor: data bandwidth may be limited by the reg-
ister file ports or the dedicated data transfer channels

2 Related Work

The speed-up obtainable by instruction-set extensions is
limited by the available data bandwidth between the base
processor and custom logic. A multi-ported register file can
increase the data bandwidth. However, additional read and
write ports result in increased register file size, power con-
sumption and cycle time. The Tensilica Xtensa [12] uses
state registers to explicitly move additional input and out-
put operands between the base processor and custom units.
Clever binding of base processor registers to state registers
at compile time reduces the number of data transfers. In ad-
dition, state register approach solves the problem of encod-
ing many operands within a fixed length instruction word.

Shadow registers duplicate a subset of base processor
registers [9] to increase the data bandwidth. The mapping
between base processor registers and shadow registers can
be fixed, or established at compile time. Contents of shadow
registers can be read without a limitation on the bandwidth.
Jayaseelan et al. [13] show that up to two additional input
operands for instruction-set extensions can be supplied free
of cost by exploiting the forwarding paths of the proces-
sor. Pozzi et al. [14] reduce the data transfer overhead by
overlapping execution cycles with data transfers cycles for
pipelined multi-cycle instruction-set extensions.

Automatic identification of instruction set extensions
from high level application descriptions has received con-
siderable attention in the recent years. In [8], related
dataflow graph (DFG) nodes are heuristically clustered as
sequential or parallel templates. In [6], input and output
constraints are imposed on the subgraphs to reduce the ex-
ponential search space. Application of a constraint prop-
agation technique results in an efficient enumerative algo-
rithm. However, the applicability of the approach is lim-
ited to DFGs with around 100 nodes. Search space can be
further reduced by imposing additional constraints such as
single output [10], or connectivity [15] constraints on the
subgraphs. In [5], Atasu et al. formulate the problem of

identifying instruction-set extensions under input and out-
put constraints as an ILP. Biswas et al. propose an exten-
sion to the Kernighan-Lin heuristic, again based on input
and output constraints in [7].

In previous work [6, 7, 10, 15], optimality is limited
by either an approximate search algorithm or some artifi-
cial constraints (such as input/output constraints) that make
subgraph enumeration tractable. In this work, we extend
the ILP formulation of [5], replacing the input/output con-
straints with the actual data bandwidth constraints and data
transfer costs. The instruction-set extensions we generate
may have an unlimited number of inputs and outputs. A
baseline machine with architecturally visible state registers
makes our approach feasible. We integrate the data band-
width information directly into the optimization process,
and we explicitly account for the cost of the data transfers
between the core register file and custom state registers as
part of the optimization.

The approaches described in [13] and [9] are comple-
mentary to ours, since our formulation can take advantage
of the increased data bandwidth. The approach of Pozzi et
al. [14] can be combined with ours to further optimize the
performance of multi-cycle instruction-set extensions.

3 The Compilation Flow

We use the Trimaran [4] framework to generate the con-
trol/dataflow information, and to achieve basic block level
profiling of a given application. Specifically, we work with
Elcor, the back-end of Trimaran. We read Elcor interme-
diate representation after applying classical compiler opti-
mizations. Immediately prior to register allocation, we ap-
ply our algorithms to identify the instruction-set extensions.
We use the industry standard CPLEX Mixed Integer Opti-
mizer [1] within our algorithms to solve our ILP problems.

An instruction-set extension template is a dataflow sub-
graph that can potentially be replaced by an instruction-
set extension. We generate a set of instruction-set exten-
sion templates based on an ILP formulation described in
Section 5. Next, we group structurally equivalent tem-
plates within isomorphism classes as instruction-set exten-
sion candidates. We generate the behavioral hardware de-
scriptions of instruction-set extension candidates in VHDL,
and we produce area estimates using Synopsys Design
Compiler. After that, we select a a subset of the instruction-
set extension candidates under a set of area constraints
based on a Knapsack model.

Once the most profitable instruction-set extension can-
didates are selected under area constraints, we automati-
cally generate a high level machine description (MDES)
supporting the selected instructions. Next, for each se-
lected instruction, we replace the matching code segments
with an opcode representing the new instruction. After that,
we apply standard Trimaran scheduling and register alloca-
tion passes on the code with the new instructions. Finally,



Figure 2. The compilation flow: we integrate our
algorithms into the Trimaran framework [4]. Starting
with C code, we automatically generate customized
machine descriptions and assembly code.

we generate the assembly code, and collect the scheduling
statistics. Figure 2 depicts our tool chain structure.

4 Template Generation and Selection

Our template generation algorithm iteratively solves a set
of ILP problems in order to generate a set of templates. For
a given application basic block, the first template is iden-
tified by solving the ILP problem as defined in Section 5.
After the identification of the first template, the dataflow
graph nodes contained in the template are collapsed into a
single node, and the same procedure is applied for the rest
of the graph. The process is continued until no more prof-
itable templates are found. Template generation algorithm
is applied on all application basic blocks, and a unified set
of instruction-set extensions templates are generated.

After template generation is done, we calculate the iso-
morphism classes using the nauty package [3]. We assume
that the set of generated templates T is partitioned into NG

distinct isomorphism classes:

T = T1 ∪ T2 ∪ ... ∪ TNG (1)

The weight W (T ) of the template T is defined as the
value of the objective function Z(T ) described in Sec-
tion 5.3 multiplied by the frequency of execution F (T ) of
the template, which estimates the reduction in the schedule
length of the application by replacing the template with an
instruction-set extension candidate. More formally:

W (T ) = Z(T ) ∗ F (T ) (2)

The weight of an isomorphism class is defined as the sum
of the weights of all the templates within that class, which
estimates the reduction in the schedule length of the appli-
cation by replacing all the templates with an instruction-set
extension candidate representing the isomorphism class.

W (Ti) =
∑

T∈Ti
W (T ), i ∈ {1..NG} (3)

At this point, we generate behavioral descriptions of the
instruction set extension candidates, and produce area esti-
mates using high level synthesis. As a result, we associate
with each instruction set extension candidate Ti an area es-
timate A(Ti). We formulate the selection of most profitable
instruction-set extension candidates under area constraint
AMAX as a Knapsack problem, and solve it using ILP:

max
∑

i∈{1..NG}
W (Ti)yi

s.t.
∑

i∈{1..NG}
A(Ti)yi ≤ AMAX

yi ∈ {0, 1} , i ∈ 1..NG

(4)

where the binary decision variable yi represents whether
candidate i is selected (yi = 1) or not (yi = 0).

5 ILP Model for Template Identification

We represent a basic block using a directed acyclic graph
G
(
V ∪ V in, E ∪ Ein

)
where nodes V represent opera-

tions, edges E represent register flow dependencies be-
tween operations, nodes V in represent input variables of
the basic block, and edges Ein connect input variables V in

to consumer operations in V . Nodes V out ⊆ V represents
operations generating output variables of the basic block.

An instruction-set extension template T is an induced
subgraph ofG. We associate with each dataflow graph node
a binary decision variable xi that represents whether the
node is contained in the template (xi = 1) or not (xi = 0).
We use x′i to denote the complement of xi (x′i = 1 − xi).
A template T is convex if there exists no path in G from a
node u ∈ T to another node v ∈ T which involves a node
w /∈ T . The convexity constraint is imposed on the tem-
plates to ensure that no cyclic dependencies are introduced
in G, and a feasible schedule can be generated.

We associate with every graph node vi a software latency
si, and a hardware latency hi, where si is integer and hi is
real. We normalize hardware latencies based on the latency
of a 32-bit adder. We estimate the execution latency of a
template T on the processor pipeline as an instruction-set
extension by quantizing its critical path length L.

We assume RFin read ports, and RFout write ports sup-
ported by the core register file. If the number of inputs for
a template is larger than RFin, we assume additional data



transfers from the core register file to custom state registers.
If the number of outputs for a template is larger thanRFout,
we assume additional data transfers from custom state reg-
isters to the core register file. We assume a fixed cost of c1

cycles for transferring additional RFin inputs, and a fixed
cost of c2 cycles for transferring additionalRFout outputs.

We use the following indices in our formulations:

I1 : indices for nodes vini ∈ V in
I2 : indices for nodes vi ∈ V
I3 : indices for nodes vi ∈ V out

I4 : indices for nodes vi ∈ V/V out

5.1 Calculation of input data transfers

We introduce an integer decision variable Nin to com-
pute the number of inputs for a template. An input operand
vini ∈ V in of the basic block is an input of the template T if
it has at least one immediate successor in T . A node vi ∈ V
generates an input operand of T if it is not in T , and it has
at least one immediate successor in T .

Nin =
∑

i∈I1

(
∨j∈Succ(i)xj

)
+
∑

i∈I2

(
x′i ∧

(
∨j∈Succ(i)xj

))

(5)
We calculate the number of additional data transfers

from the core register file to the custom logic as Din:

Din ≥ Nin/RFin − 1, Din ∈ Z+ ∪ {0} (6)

5.2 Calculation of output data transfers

We introduce an integer decision variable Nout to com-
pute the number of outputs for a template. A node vi ∈
V out, generating an output operand of the basic block, gen-
erates an output operand of the template T if it is in T . A
node vi ∈ V/V out generates an output operand of T if it is
in T , and it has at least one immediate successor not in T .

Nout =
∑

i∈I3
xi +

∑

i∈I4

(
xi ∧

(
∨j∈Succ(i)x′j

))
(7)

We calculate the number of additional data transfers
from the custom logic to the core register file as Dout:

Dout ≥ Nout/RFout − 1, Dout ∈ Z+ ∪ {0} (8)

5.3 Objective

Our objective is to maximize the decrease in the schedule
length by moving template T from software to the custom
logic. We estimate the software cost of T as the sum of the
software latencies of the instructions contained in T . We
estimate the cost of moving T to a custom datapath as the

sum of its estimated hardware execution latency L, and the
number of cycles required to transfer its input and output
operands. The objective function is defined as follows:

Z(T ) = max
∑

i∈I2
(sixi)− (L+ c1Din + c2Dout) (9)

6 Experimental Setup and Results

We evaluate our technique using Trimaran scheduling
statistics to estimate cycle counts, and hardware synthesis
for exact timing and area information. We use our own in-
order extensible processor [11] that implements the MIPS
integer instruction set and supports up to 512 instruction-
set extensions. Our core register file supports two read
ports and a single write port. We generate state registers
for each instruction extension operand and hardware move
instructions that provide single cycle latency transfers be-
tween register file and custom units (c1 = c2 = 1).

We apply our algorithms on four encryption benchmarks
with very large basic blocks to demonstrate the scalabil-
ity of our approach: optimized 32-bit implementations of
AES (Advanced Encryption Standard) encryption and de-
cryption, DES (Data Encryption Standard), and SHA (Se-
cure Hash Algorithm) from the Mibench suite [2]. DES and
SHA are fully unrolled, resulting in basic blocks with more
than a thousand instructions.

In Figures 3 and 4 we analyze the effect of different
input and output constraints on the speed-up potentials of
instruction-set extensions assuming a register file with 2
read ports and 1 write port. We scale the initial cycle count
down to 100, and we plot the percent decrease in the cy-
cle count for a range of area constraints (4 to 32 ripple carry
adders). Relaxation of the input/output constraints results in
coarser grain instruction-set extensions (i.e., larger dataflow
subgraphs). Such extensions often offer higher speed-up at
the expense of higher area. Figure 3 shows that imposing
an input constraint of 2 and an output constraint of 1 (i.e.,
(2,1)) on the extensions, the cycle count for AES decryp-
tion is reduced to 29% at an area cost of 4 adders. On the
other hand, 4-input 1-output extensions decrease the cycle
count down to 23% at an area cost of 8 adders. Relaxing the
input/output constraints completely (i.e., (∞,∞)) results in
a slight reduction only, at an area cost of 32 adders. Fig-
ure 4 shows that 2-input 1-output extensions reduce the cy-
cle count for DES down to 67%. 4-input 4-output exten-
sions can exploit more parallelism, and the cycle count de-
creases to 56%. The best speed-up for DES is achieved
when the input/output constraints are completely relaxed,
where the cycle count is reduced to 52% at an area cost of
20 adders. This solution incorporates an 11-input 9-output
extension, which is reused 12 times in the application.

In Figure 5, we assume a register file with 2 read ports
and 1 write port and an area constraint of 24 adders. The
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Figure 3. AES decryption: reduction in execution
cycles. Register file support 2 read ports and 1 write
port. (n,k) represents n-input k-output extensions.
(∞,∞) represents no constraint on inputs or outputs.
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Figure 4. DES: reduction in execution cycles. Reg-
ister file supports 2 read ports and 1 write port. (n,k)
represents n-input k-output extensions. (∞,∞) repre-
sents no constraint on inputs or outputs.

previous approach [5] limits the number of inputs and out-
puts to the available register file ports. In contrast, the exten-
sions we generate may have an unlimited number of inputs
and outputs. Avoiding the previous limitation, we improve
the speed-up from 1.1× to 1.3× for SHA, from 1.5× to
1.9× for DES, from 3.4× to 4.3× for AES Decryption, and
from 2.6× to 2.8× for AES encryption.

In Figure 6, we study the improvement in speed-up us-
ing additional register file ports for an area constraint of 36
adders. A register file with 4 read and 2 write ports im-
proves the speed-up to 1.6× for SHA, 2.6× for DES, 5.9×
for AES decryption, and 3.8× for AES encryption. Up to
6.6× speed-up is reachable given 4 read and 4 write ports.

Figure 5. Speed-up improvement using a register
file with 2 read ports and 1 write port. Previous ap-
proach [5] limits the number of inputs and outputs to
the available register file ports.

Figure 6. Speed-up improves with additional register
file ports: (n,k) represents n read and k write ports.

Assuming a register file with 2 read ports and 1 write
port, we automatically generate a CPU core implementing
the extensions selected for each area constraint. We obtain
realistic timing and area results by synthesizing each core
to UMC’s 130nm standard cell library using Synopsys De-
sign Compiler and Cadence SoC Encounter for routing and
layout. The highest performance AES decryption processor
we generate incurs only a 35% increase over the area of the
unextended processor while offering a speed-up of 4.3×.

Figure 7 summarizes timing results for each generated
processor (179 in total). The volume of designs prohibits
manual optimization, hence we report the worst case neg-
ative slack with a 200MHz constraint for the tool ven-
dor’s recommended fully automated flow. Our technique
pipelines multi-cycle instruction-set extensions to avoid de-
creasing the processor clock rate. Figure 7 shows that 48%
of the customized designs meet timing in the first pass. A
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further 31% marginally fail to meet timing (<1ns negative
slack), and the remainder miss by a greater margin.

The most time consuming part of our algorithms is the
template generation algorithm that iteratively solves ILP
problems. Table 1 describes the ILP statistics associated
with the first iteration of the template generation algorithm
on the largest basic block of each benchmark given a con-
straint of (4,4) on the inputs and outputs. The solution time
is generally only a few seconds. However, it may exceed
one hour as it happens for SHA. We observed an overall
runtime of 13 seconds for AES encryption, 20 seconds for
AES decryption, 2.5 minutes for DES, and about 21.5 hours
for SHA. We obtained optimal ILP results in all cases.

Benchmark BB size Vars Constrs Time
AES enc. 317 1403 4124 0.8
AES dec. 501 2483 7404 2.9
DES 822 3417 9760 10.4
SHA 1155 5899 18524 5116

Table 1. Size of the largest basic block (BB), num-
ber of integer variables (Vars), number of linear con-
straints (Constrs), and the solution time in seconds.

7 Conclusions

This work describes a comprehensive design flow ex-
ploration to identify the optimal instruction-set extensions
given a high level application description. Our approach
is based on a scalable ILP model that integrates the data
bandwidth information and the data transfer costs into the
instruction-set extension identification process. We eval-

uate our approach using actual ASIC implementations to
demonstrate that our automatically customized processors
meet timing within the target silicon area. For an embedded
processor with only two register read ports and one regis-
ter write port, we obtain up to 4.3× speed-up with only a
35% area overhead. In addition, we explore the potential
of increasing the number of register file ports, improving
the performance more than 6.6×. We are extending our ap-
proach to enable instruction extensions to access memory
hierarchy, and to support a wide range of applications in-
volving speed, area and power consumption trade-offs.
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