
Optimizing Logarithmic Arithmetic on FPGAs

Haohuan Fu, Oskar Mencer, Wayne Luk

Department of Computing, Imperial College
London, United Kingdom

{hfu,oskar,wl}@doc.ic.ac.uk

Abstract

This paper proposes optimizations of the methods and
parameters used in both mathematical approximation and
hardware design for logarithmic number system (LNS)
arithmetic. First, we introduce a general polynomial ap-
proximation approach with an adaptive divide-in-halves
segmentation method for evaluation of LNS arithmetic
functions. Second, we develop a library generator that au-
tomatically generates optimized LNS arithmetic units with
a wide bit-width range from 21 to 64 bits, to support LNS
application development and design exploration. The ba-
sic arithmetic units are tested on practical FPGA boards
as well as software simulation. When compared with exist-
ing LNS designs, our generated units provide in most cases
6% to 37% reduction in area and 20% to 50% reduction
in latency. The key challenge for LNS remains on the ap-
plication level. We show the performance of LNS versus
floating-point for realistic applications: digital sine/cosine
waveform generator, matrix multiplication and radiative
Monte Carlo simulation. Our infrastructure for fast pro-
totyping LNS FPGA applications allows us to efficiently
study LNS number representation and its tradeoffs in speed
and size when compared with floating-point designs.

1. Introduction

Logarithmic number system (LNS) was first introduced
into computer systems for processing of low-precision FFT
in 1970s [1]. Due to its similar representation range and
better relative error behavior, LNS has long been consid-
ered as an alternative to the floating-point (FLP) represen-
tation. However, since its addition and subtraction are diffi-
cult, LNS is not widely used in practical hardware designs.

To provide a reconfigurable LNS arithmetic library with
convenient support for all various bit-width cases, we look
into the characteristics of LNS arithmetic functions, design
and adjust the approximation schemes accordingly, and de-
velop a configurable LNS library generator. Our contribu-
tions are:

1. a systematic improvement of LNS arithmetic on
FPGA, and a general polynomial approximation ap-
proach based on adaptive segmentation;

2. an easy-to-use LNS library generator with reconfig-
urable bit-width settings to support LNS application
development and design exploration; the library gen-
erator allows various parameters, such as integer and
fractional bits of the LNS number, degree of the poly-
nomial to be used for the design, the error ratio be-
tween approximation error and quantization error, etc.

The basic arithmetic units are tested on practical FPGA
board as well as software simulation. When compared with
existing LNS designs [2], most of our LNS units achieve a
6% to 37% reduction in area (number of slices) and 20%
to 50% reduction in latency, with a reduced or comparable
usage of block RAM (BRAM) and 18 by 18 hardware mul-
tipliers (HMUL). We also demonstrate the performance of
LNS versus floating-point on realistic applications, such as
digital sine/cosine waveform generator, matrix multiplica-
tion, and radiative Monte Carlo simulation. Our infrastruc-
ture for fast prototyping LNS FPGA applications allows
us to efficiently study the LNS number representation and
their impact on other applications that LNS may achieve
better performance.

A number of methods have been proposed to tackle the
problem of LNS ADD/SUB design, and to provide imple-
mentations with acceptable hardware cost. For bit-widths
around 10 bits, we can implement LNS ADD/SUB directly
through look-up tables with Read-Only Memories (ROMs)
[1], with 10× 210 = 10K bits of storage. When the pre-
cision requirement goes from 10 bits to 20, the size of
the table increases exponentially to 20× 220 = 20M bits.
Direct look-up table becomes impractical, thus other tech-
niques are needed to make practical LNS designs. Piece-
wise polynomial approximations, such as Lagrange inter-
polation [3] and Chebyshev approximation [4], solve the
problem by dividing the input value range into small seg-
ments and approximating the value with a different polyno-
mial in each segment. On the other hand, on-line methods
(also known as digit-serial or iterative methods) [5], [6],

calculate the result digit by digit, with a smaller memory
cost but increased delay. Meanwhile, a number of different
techniques are also proposed to enhance the design by ei-
ther improving the accuracy or reducing the resource costs,
such as error correction [7], coefficient generation on the
fly [3], and function transformations [8], [9].

Based on the above work, some LNS arithmetic libraries
are provided for FPGA platforms. Using the arithmetic de-
signs of the European LNS microprocessor [7], Matousek
et al. [10] present an arithmetic library on FPGA for 20-bit
and 32-bit LNS numbers. J. Detrey et al. [11] provide a
VHDL library of LNS operators with a configurable preci-
sion up to 32 bits. More recent work includes comparison
study between FLP and LNS [2], which demonstrates a pa-
rameterized Verilog arithmetic library for both 32-bit and
64-bit LNS numbers. Most of the existing libraries either
work on bit-width values below 32 bits, or focus on the
counter-parts of IEEE 754 single and double precision FLP
formats; they lack a systematic analysis and reconfigurable
support for a wide range of LNS bit-widths.

2. Background

2.1. LNS Representation and Arithmetic

Unlike the FLP numbers defined by IEEE 754 standard,
there is no commonly accepted standard for LNS numbers.
In this paper, we use the signed-logarithmic representation
format similar to [5], which consists of a sign bit and a
fixed-point number to record the logarithmic value, shown
as follows:

Fixed-point Logarithmic Value
Sign Bit

Integer: m bits Fractional: f bits
S M F

Its value is given by (−1)S × 2M.F , which provides a
similar representation range to FLP numbers with m-bit ex-
ponent, f -bit significand and one sign bit. Note that the
first bit of the fixed-point logarithmic value is also a sign
bit, while the other bits indicate the absolute magnitude.

Suppose a and b are logarithmic representations of pos-
itive numbers A and B (A > B), thus A = 2a and B = 2b.
The basic LNS arithmetic operations of these two numbers
include:

MUL: A×B = 2a×2b = 2a+b.
DIV: A÷B = 2a÷2b = 2a−b.
ADD: A+B = 2a +2b = 2a+log2(1+2b−a).
SUB: A−B = 2a−2b = 2b+log2(2a−b−1).

Thus, we can implement LNS MUL and DIV with
fixed-point addition or subtraction, but for LNS ADD and
SUB we need to evaluate two transcendental functions,

f1(x) = log2(1 + 2x) and f2(x) = log2(2
x − 1), which are

difficult to approximate. The function f2(x) = log2(2
x−1)

and its derivatives have singularities at zero, which make
the evaluation even more difficult. By determining which
operand is larger before the addition/subtraction, we can as-
sure x≥ 0 in the above two functions, thus need to evaluate
f1 and f2 in the range of [0,2m].

On the other hand, since FLP numbers are used for most
of the existing hardware/software applications, a com-
plete LNS arithmetic library should also contain conversion
functions between LNS and FLP numbers. Thus, we also
need to design the logarithmic function f3(x) = log2(x) and
the exponential function f4(x) = 2x. As the exponential
part of a IEEE 754 conformal FLP number directly maps
to the integer part of its logarithmic representation, we only
need to convert between the significand part of a FLP num-
ber (in the range of [1,2)) and its base-two logarithmic
value (in the range of [0,1)). Hence, the evaluation range
for f3 and f4 are [1,2) and [0,1) respectively.

2.2. Accuracy Requirement

The relative representation error of a floating-point num-
ber has a variation range of (2− f−2,2− f−1], while the LNS
number has a constant relative error of 22− f−1 −1 ≈ ln2×
2− f−1 ≈ 0.693× 2− f−1. Thus LNS has a inherent better
worst-case relative error compared to FLP. For MUL/DIV
operations, LNS also wins by introducing no rounding er-
rors, compared to a 2− f−1 relative rounding error for FLP
MUL/DIV. However, LNS becomes the worse one for the
four LNS arithmetic functions (f1 to f4). These four tran-
scendental functions can only be approximated, which al-
ready bring a half unit-in-the-last-place (ulp) rounding er-
ror at the last step of approximation.

Existing work [3], [4], [7] reports that two or three extra
bits need to be calculated in order to achieve a Better-Than-
Floating-Point (BTFP) error behavior for LNS ADD/SUB.
On the other hand, Arnold et al. [12] propose that faith-
ful rounding (the evaluation result is the nearest or the next
nearest machine number representation) is good enough for
some LNS applications, and can greatly save hardware re-
source compared with BTFP designs.

In our library generator, we require only faithful round-
ings for the evaluation of the four functions, which means
the maximum error of the hardware designs for the four
functions should be less than 1 ulp, i.e. 2− f . As the round-
ing of the evaluation result already introduces an error of
2− f−1, we require the error introduced by other parts to be
below 2− f−1.

If an application requires BTFP units, as we provide
LNS arithmetic units for various bit-widths, we can sim-
ply modify the last rounding step of a faithful rounding
design for a larger bit-width, so as to round to the re-

Table 1: Number of bits for the integer part (m) and the
fractional part (f) of the LNS numbers used in this paper.

integer part 7 8 9 10 11
fractional part 13-23 23-32 32-42 42-52 52

sign bit 1 1 1 1 1
total bit-width 21-31 32-41 42-52 53-63 64

quired bit-width with BTFP accuracy. Suppose we mod-
ify a faithful rounding LNS arithmetic unit for x+∆ bits to
get a BTFP LNS arithmetic unit for x bits. In logarithmic
value domain, the error bound for the parts excluding the
last rounding is 2−x−1−∆, and the error bound for the last
rounding is 2−x−1. Thus, the bound for the total error in
logarithmic value domain is 2−x−1 + 2−x−1−∆. In order to
achieve BTFP maximum relative error for x bits, we have
to assure 22−x−1+2−x−1−∆ −1 < 2−x−1, which approximates
as ln2× (2−x−1 + 2−x−1−∆) < 2−x−1, and gives ∆ > 1.18.
Thus, to achieve a BTFP LNS arithmetic unit for x bits, we
utilize the faithful rounding unit for x + 2 bits and modify
the last step to round to x bits.

Another problem concerning the accuracy requirements
is the ratio of different error parts. The error of a hard-
ware function evaluation unit consists of two parts [13]:
(1) approximation error: the error due to the mathemati-
cal approximation method, provided that we compute with
infinite precision; (2) quantization error: the rounding and
truncation errors due to finite precision of hardware number
representation. Therefore, when we design the mathemati-
cal approximation approach for a function, we need to re-
serve error space for the hardware errors. For convenience,
we define G as the ratio between the approximation error
requirement and the total error requirement. Based on ex-
periment results, we set G to be 0.3 in general cases. Thus,
with 1 ulp accuracy requirement for the units, the bound
for approximation error is 0.3 ulp, the rounding error in the
last step takes up 0.5 ulp, and the bound for quantization
error in other parts is 0.2 ulp.

3. Evaluation of LNS Arithmetic Functions

For LNS numbers with a small bit-width, existing work
[1] already provides efficient hardware designs based on
direct look-up table approaches. In this paper, we focus on
arithmetic units for medium and large bit-widths from 21
to 64 bits. The values of integer bit-width m and fractional
bit-width f used in our experiments are shown in Table 1.

In our library generator, we adopt the piecewise polyno-
mial approximation method as a general approach to eval-
uate all the four functions. To develop an approximation
design, we need to firstly divide the evaluation range into
a number of small segments, and then calculate the poly-

0 2 4 6 8 10 12 14 16
10

−25

10
−20

10
−15

10
−10

10
−5

Value of x

M
ax

im
um

 A
pp

ro
xi

m
at

io
n

E
rr

or
s

degree=1

degree=2

degree=3

degree=4

degree =5

Figure 1: Approximation difficulty of function f1, indi-
cated by maximum approximation errors in each segment.

nomial coefficients (c0 · · ·cn) of each segments. We can
then use the coefficients to perform the evaluation with the
polynomial y = c0 ·xn + · · ·+cn−1 ·x+cn. We use the min-
imax algorithm as the polynomial approximation method,
because it provides the best maximum approximation error
over all the methods. The following sections give a more
detailed discussion about the techniques concerned.

3.1. Segmentation Method

To find a proper segmentation approach to divide the
evaluation range, we first check the approximation diffi-
culty of the four functions by investigating their approx-
imation errors over the range with a fixed approximation
setting.

Figure 1 shows the results for function f1 of 32-bit LNS
numbers. We divide the range [0, 16] into uniform seg-
ments with length of 2−4, and record the maximum approx-
imation error of each segment using degree-one to degree-
five polynomials. The error values provide a rough indi-
cation of the approximation difficulty within this segment.
For all the five different degrees, when x goes from 16 to 0
(or from 16 to 2 for degree-two), the error values increase
by more than 105 times. Function f2 shows an even faster
increase in the error values. Dividing the range [0, 16] into
uniform segments with length of 2−6, when x goes from 16
to 0, the error values increase by more than 1015.

To deal with the fast variation of approximation diffi-
culty in different ranges, we use a non-uniform adaptive
divide-in-halves segmentation approach for f1 and f2. Fig-
ure 2 gives a detailed description of the approach in a right-
to-left manner, which suits functions that become more dif-
ficult to approximate from right to left. Generally, we di-
vide the range into two halves, and try to approximate the

Segmentation of function f (x) in [a, b] with an error requirement of E.

begin = a; end = b; K = 1;
while (end != begin)
{ //handle the right half.

mid = (begin+end)/2;
seg len = (b−a)

2K ;
compute the max error for approximation of segment [mid, mid+seg len];
if (max error ≥ E) {

//test fails,need to compute with more segments;
K = K+1;
continue; //jump to the next iteration of while

}
else {

//test passes, divide with the current K;
divide [mid, end] into 2K uniform segments;
end = mid;

}

//handle the left half.
compute the max error for approximation of segment [begin, begin+seg len];
if (max error ≥ E) {

//test fails, jump to the next iteration;
continue;

}
else {

//test passes, segmentation is finished;
divide [begin, mid] into 2K uniform segments;
end = begin;

}
}

Figure 2: Right-to-left adaptive divide-in-halves segmenta-
tion approach.

right half with a uniform segmentation using the current K
(the segment length equals to the length of the whole eval-
uation range divided by 2K). If it fails to meet the error
requirement, we increase the K and try again. If it suc-
ceeds, we try to handle the left half with the same K. If it
also succeeds for the left half, the segmentation is finished;
otherwise, we divide the left part into halves and continue
the process recursively. For the ranges where the approx-
imation difficulty increases monotonically, we only need
to compute the maximum approximation error of the left-
most segment to check whether the segmentation with the
current K satisfies the error requirement.

Compared with f1 and f2, conversion functions f3 and
f4 have a small evaluation range. Moreover, although their
approximation errors increase or decrease monotonously,
the variation is only seven times for f3 and two times for
f4, compared to 105 for f1 and 1015 for f2. Thus, we use
uniform power-of-two segmentation for them.

3.2. Selection of Polynomial Degree

In piecewise polynomial approximation, there is a clear
tradeoff between the polynomial degree and the density of
segmentation. Given a fixed error requirement, if we use
a higher polynomial degree, the function can be approxi-
mated with a smaller number of segments. On the other

20 25 30 35 40 45 50 55 60 65
10

1

10
2

10
3

10
4

Bit−width Values of LNS operands

N
um

be
r

of
 S

eg
m

en
ts

ne

ed
ed

 to
 a

ch
ie

ve
 a

pp
ro

xi
m

at
io

n
er

ro
r

be
lo

w
 0

.3
 u

lp

degree−one
degree−two
degree−three
degree−four
degree−five

512

Figure 3: Number of segments needed to evaluate f1 for
different bit-widths using different polynomial degrees.

hand, if the approximation is performed with a larger num-
ber of segments, a smaller polynomial degree can be used.

Figure 3 shows the number of segments needed to eval-
uate f1 for different precision requirements with different
polynomial degrees. For the memory units on FPGA, one
Block RAM (BRAM) can hold up 18K bits, which is 512
36-bit values. Based on this consideration, we hold a gen-
eral constraint that the number of segments shall be around
512, so that the coefficient data of one degree can be filled
into one or two BRAMs. According to this constraint, as
shown in Figure 3, degree-one polynomial is only used for
bit-widths below 24, degree-two polynomial is suggested
for bit-widths from 25 to 36, degree-three for bit-widths
from 36 to 45, degree-four for 46 to 55, and degree-five
for 56 to 64. Function f2 shows a similar case as f1, while
f3 and f4 are easier to approximate and can be generally
handled with smaller degrees than f1 and f2.

3.3. Function Evaluation of f1

As shown in Figure 1, the error decreases very quickly
for all the degrees when x grows into a large value. This
is because linear function y = x gives a quite accurate ap-
proximation for f1 for large x values. Therefore, we find a
point x = 2r, which assures that for all the x values on the
right side of this point, the difference between y = x and f1
is within the error requirement. The approximation of f1 is
then divided into three ranges:

• If x≥ 2r, f1 is approximated with y = x.

• If 2 ≤ x < 2r, we use the adaptive divide-in-halves
segmentation approach for f1. From the far end of
the evaluation range to the point x = 2, we gradually
reduce the segment length to meet the precision re-

quirement. Meanwhile, the adaptive adjustments only
take place at half points, which provide a relatively
easy address encoding mechanism for the coefficient
tables when we map the approximation method into
hardware design.

• If 0 ≤ x < 2, for degree-one, three, four and five
cases, we continue the adaptive divide-in-halves ap-
proach until the end. Although there are several turn-
ing points in degree-three, four and five cases, the er-
rors decrease and increase again in a very fast manner,
which make the change of adaptive pattern (right-to-
left or left-to-right) not useful. In degree-two case, as
the error keeps on decreasing after the point of x = 2,
we originally try to perform adaptive segmentation in
a left-to-right manner from 0 to 2. However, since the
error value at the mid-point (x = 1) is still close to the
error value at x = 2, the result of the divide-in-halves
approach turns out to approximate the whole range
with the same segment length. Hence, we move the
dividing point from the mid-point to x = 0.5. Both [0,
0.5] and [0.5, 2] are approximated with uniform seg-
mentation, but [0, 0.5] uses a smaller segment length
than [0.5, 2].

3.4. Function Evaluation of f2

Evaluation of f2 is the most difficult part of the de-
sign of LNS arithmetic. Especially for the range near
zero, the existence of singularity makes the effect of poly-
nomial approximation very poor. In order to circumvent
this difficulty, we use the function decomposition approach
[4], [8] to transform f2 = log2(2x− 1) into f2 = g + f3 =
log2(2x−1

x)+ log2(x), thus f2 can be evaluated through two
other functions which are relatively easier to approximate.

To find out under what kind of condition we shall re-
place f2 with g and f3, we perform a similar approximation
difficulty investigation as section 3.1 to f2 and g. Function
f3 is not considered, as it can be shifted into a small range
of [1, 2) and is much easier to approximate. As shown
in Figure 4, we divide the evaluation range into uniform
segments with length of 2−6, and record the maximum ap-
proximation error of f2 and g in each segment. When x
gets close to zero, f2 becomes much more difficult to ap-
proximate very fast. From the point around x = 6.703125,
g becomes easier to approximate than f2. However, as the
error of g and f3 are combined to make the total error, we
require the error of g to be below half of the error of f2.
Based on these considerations, we use the decomposition
for the range of [0, 4] (at point x = 4, error of g is about
16.5% of f2), rather than the range of [0, 2] used in [4].

Similar to f1, when x becomes very large, y = x provides
a good approximation of f2, and we can also find out a point

0 2 4 6 8 10 12 14 16
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Value of x

M
ax

im
um

 A
pp

ro
xi

m
at

io
n

E
rr

or
s

f
2

g

Figure 4: Approximation difficulty of f2 and g, indicated
by the maximum approximation error in each segment.

x = 2r as the starting point to use y = x for evaluation. The
approximation of f2 is then divided into three ranges:

• If x≥ 2r, f2 is approximated with y = x.

• If 4 ≤ x < 2r, we approximate f2 with a polynomial.
The right-to-left adaptive divide-in-halves approach
introduced in section 3.1 produces the segmentation
in this range.

• If 0≤ x < 4, approximation of f2 is decomposed into
g and f3. As the approximation difficulty of both g
and f3 does not vary too much, we use uniform seg-
mentation for function g and f3.

4. LNS Library Generator

4.1. General Structure

The general structure of our library generator is shown
in Figure 5. We use Maple as the mathematical approxima-
tion design tool, as it provides convenient support for poly-
nomial approximation methods, such as Chebyshev and
minimax algorithms. Our Maple programs divide the func-
tion evaluation range into proper segments with the seg-
mentation approach discussed in section 3.1 and compute
the coefficients of each segment. The result files of the
Maple programs, which contain the information of all the
segments’ ranges, errors and coefficients, are stored into
the coefficient file repository.

We use Matlab as the interface tool between the mathe-
matical approximation design level and the hardware map-
ping design level. The Matlab functions read in the seg-
mentation file from the coefficient file repository, produce

Coefficient File
Repository

C++ Syntax
ASC Description of

LNS Arithmetic Units

ASC:
Area, Latency, Throughput Optimization

Synthesis, Place & Route

Maple Programs:

gen_add_coeff

gen_sub_coeff

gen_log_coeff

gen_pow_coeff

Matlab Programs:

lns_sub

lns_add

float2lns

lns2float

User Input Script:

LNS_IB = ?
LNS_FB =?

ADD_DEG = ?
…

G = ?

LNS Design Using the
Library

HWlns a(Register, 64, 52);
HWlns b(TMP, 64, 52);

…
a = a+b;

Figure 5: General structure of the library generator.

the design for the arithmetic units, and generate the descrip-
tion file of the design in the C++ syntax format of A Stream
Compiler [14], ASC.

As a high-level FPGA programming tool, ASC pro-
vides hardware data-types, such as integer, fixed-point and
floating-point number, with configurable bit-widths. It also
provides configurable optimization mode, such as area, la-
tency and throughput. By specifying the throughput mode,
ASC automatically generates a fully-pipelined circuit de-
sign for the application. These features make ASC an ideal
hardware compilation tool for our library generator.

To generate an LNS arithmetic library with specific set-
tings, the user only needs to write a simple script file which
specifies the bit-widths of the LNS number, the approxi-
mation error ratio G and the polynomial degrees to be used
for the four functions. With these parameters, the script file
calls the corresponding Maple and Matlab programs, which
automatically generate the LNS library file that contains a
full set of LNS arithmetic units described in ASC syntax.

With the LNS library file, users can then design their
target applications using LNS as a normal data-type that
supports general operators such as +,−,∗,/.

4.2. Address Encoder of Coefficient Table

The first part of a polynomial approximation design is
the address encoder of the coefficient tables. If the func-
tion uses a uniform power-of-two segmentation such as f3
and f4, after transforming the original range into [0,1], we
can simply use the first K bits of the number as the address
of the coefficient table. The address is more complicated
to calculate for functions that use divide-in-halves adap-
tive segmentation. Suppose we segment the range [0, 2m]

leading_one_detector

input x(0:30), 31 bits

t_x(0:6) = x(21:27), 7 bits

Leading one position

6 -

table index

offset table
248
184
120
56
24
8
0

mapping of address bits
kx0(0:5) = x(23:26)
kx1(0:5) = x(20:25)
kx2(0:5) = x(19:24)
kx3(0:5) = x(18:23)
kx4(0:5) = x(18:22)
kx5(0:5) = x(18:21)
kx6(0:5) = x(19:21)

coefficient
address

+

Figure 6: Address encoder circuit for 32-bit LNS ADD.

with right-to-left adaptive divide-in-halves segmentation,
the range is divided into a number of sections s0, s1, s2, · · · ,
sn, and each section si is divided into 2Ki uniform segments.
Because the sections are actually formed in a divide-in-
halves manner, the distribution shall be {s0 = [0,2p], s1 =
[2p,2p+1], · · · , sn = [2p+n−1,2p+n]}. Thus, given an input
value x, based on its leading one position, we can determine
the section the input value falls in, and then use the next Ki
bits after the leading one to find out its segment number in
the section.

Figure 6 shows the hardware architecture of the ad-
dress encoder for a 32-bit LNS adder. Two tables are used
to calculate the coefficient table address based on the in-
put value’s leading one position, which identifies its cor-
responding section. The offset table records the address
offset of each section, i.e. the address of the first element
in that section. The table of address bits maps the corre-
sponding Ki bits of the input value into a number. The sum
of the section offset and the Ki address bits give the table
address of the coefficients.

4.3. Circuit Structure of Arithmetic Units

The circuit structure of f1, f3 and f4 units consists of
three parts: an address encoder, coefficient tables, and the
polynomial calculation module. Using the result of the
address encoder, we can then fetch the coefficients from
the BRAM and calculate the value of the polynomial. We
evaluate an n-degree polynomial using Horner’s method,
y = cn + (cn−1 + · · ·+ (c1 + c0 · x) · x) · · ·) · x. The hard-
ware unit contains n + 1 coefficients (c0 · · · cn), and 2n
intermediate results (b1 = c0 · x, d1 = b1 + c1, b2 = d1 · x,
· · · , bn = dn−1 · x, dn = bn + cn). To perform bit-width op-

timization on all the variables, we adopt the error model
of [13] to give a strict bound to the error of the hardware
design. Meanwhile, we build up a cost function that esti-
mates the hardware overhead, which includes the number
of slices occupied, number of BRAMs and number of hard-
ware multipliers. With the error function and the cost func-
tion, we use the ASA method [15] to find the heuristic best
solution in the multi-dimensional parameter space.

The circuit structure of f2 is more complicated, as it is
decomposed into g and f3 for the range [0, 4]. It contains
two sets of address encoders, coefficient tables and poly-
nomial calculation modules, one used for f2 (x ≥ 4) and g
(0 < x < 4), the other for f3.

In the arithmetic operations of most applications, we do
not know the signs of the two operands in advance. De-
pending on whether they have the same sign or not, the
operation of +/− can be mapped into either addition or
subtraction. Thus, we also generate mixed units that can
perform both addition and subtraction (not concurrently).
The mixed units have three sets of address encoders and co-
efficient tables, but just two sets of polynomial calculation
modules, as f1 shares the polynomial calculation module
with f2 and g. The comparison result of the two operands’
signs is used to determine which coefficients are used to
perform the calculation.

The coefficients are stored in BRAMs on FPGA, which
provide two ports that can be read concurrently. Based on
this consideration, we provide an automatic BRAM sharing
mechanism in our LNS library. When the program maps
the operator into adders/subtractors, it keeps a record of the
BRAMs’ usage and try to share them among consecutive
calls to the same type of unit. In applications with even
number of +/− operations, this mechanism can reduce the
number of BRAMs by half.

4.4. Error Ratio Adjustment

As mentioned in section 2.2, in general we set G to be
0.3, which leaves the other 0.2 ulp for quantization errors.
However, for cases with an ‘edge’ segment number, we per-
form adjustment of the error ratio G to identify the optimal
setting. For instance, with G=0.3, 544 segments are needed
to calculate 64-bit f1 with a degree-five polynomial. Since
544 is above the bound of 512, a BRAM-based coefficient
table has to organize the data in an address space of 1024
elements, which produces almost 50% waste of the BRAM
resource. To reduce this big waste, we try with different G
values from 0.05 to 0.45 with a step size of 0.05.

Table 2 shows the area and latency of LNS ADD de-
signs with several different G values. When the value of
G decreases from 0.3 to 0.05, the number of segments in-
creases from 544 to 832. However, the number of BRAMs
does not change as they are both using the 1024 by 16bit

Table 2: Area and latency of 64-bit (m = 11, f = 52) LNS
ADD units with different G values.

G segments slices BRAMs HMUL latency
0.05 832 1079 17 12 72.9 ns
0.3 544 1103 17 12 73.8 ns

0.45 480 1134 10 12 75.7 ns

configuration of the BRAM, and the number of slices only
decreases by 24. On the other hand, when the value of G
increases from 0.3 to 0.45, the number of segments drops
below 512, and the number of BRAMs also falls from 17
to 10. Although the number of slices increases by 31, it is
small when compared with the BRAM reduction.

4.5. Experiment Results for LNS Arithmetic Units

Using ASC, we map all the arithmetic units onto the
Sepia card [16] and Xilinx Virtex-II XC2V6000 FPGA to
test their performance and hardware cost. Table 3 shows
the area and latency of the LNS arithmetic units automati-
cally produced by our generator, compared with the designs
in [2]. There is no clear description about whether a faith-
ful rounding or a BTFP accuracy is achieved in [2], thus
we compare the design with both our faithful rounding and
BTFP units. For LNS ADD units, our designs consume
5.9% to 37.2% fewer slices, 41.7% to 75% fewer HMULs,
but consume more BRAMs for 64-bit ADD. For LNS SUB
units, we use 25% fewer BRAM and 62.5% fewer HMULs
in 32-bit case. In 64-bit case, our SUB units consume more
resources than [2]. For convertors, our designs generally
consume much less resources, and support larger number
of units on one FPGA board. Meanwhile, for most units,
our designs also provide 20% to 50% reduction in latency.

Most of the existing work on LNS arithmetic designs do
not provide results of FPGA platforms, and usually only
have designs below 32 bits. Based on the results summa-
rized in [4], Table 4 gives a comparison of some existing
designs with our BTFP mixed units that can perform both
ADD and SUB operations. Note that, Lewis’ LNS design
[3] is not implemented on FPGA, but Arnold [12] gives an
estimation for the hardware cost of its data-path in slices.
For the estimation of BRAM cost, Lewis’ design requires
91K bits of ROM for the ’weak’ error mode (relax the error
requirement for f2 when x gets near zero), which is equiva-
lent to about five 18Kbit BRAM. Compared with these de-
signs, our automatically generated units consume the most
HMULs and a medium number of BRAMs. However, our
unit consumes the least amount of slices, and provides the
shortest latency.

The other advantage of our library generator is the au-
tomatic generation of different bit-width arithmetic units

Table 3: Area and latency of our auto-generated LNS arithmetic units, compared with the designs in [2]. F stands for our
faithful rounding units (1 ulp error bound in logarithmic domain) while B stands for our BTFP units (less than 0.5 ulp error
bound in floating-point domain). Number of units per FPGA is calculated based on Xilinx Virtex-II XC2V6000.

LNS ADD LNS SUB FLP to LNS LNS to FLP
[2] F B [2] F B [2] F B [2] F B

32-bit LNS slices # 750 471 490 838 989 1044 163 286 327 236 376 408
m = 8, f = 23 BRAM # 4 3 3 8 6 6 24 2 2 4 2 2

HMUL # 24 8 6 24 9 9 0 3 3 20 3 3
latency (ns) 91 48 58 95 90 91 76 51 52 72 47 46

units per FPGA 6 18 24 6 16 16 6 48 48 7 48 48
slices # 1944 1727 1830 2172 3140 3410 7631 1029 1063 3152 996 1026

64-bit LNS BRAM # 8 10 18 16 20 30 0 5 5 14 5 5
m = 11, f = 52 HMUL # 72 42 42 72 84 101 0 36 33 226 30 30

latency (ns) 107 81 84 110 98 122 380 77 73 84 111 111
units per FPGA 2 3 3 1 1 1 4 4 4 0 4 4

Table 4: Area and latency of our 32-bit mixed BTFP LNS
arithmetic units, compared with other existing designs.

design Accuracy BRAM HMUL slices latency
MIX BTFP 9 11 1066 83
[3] BTFP 5 0 2300 x
[10] BTFP 96 0 1300 160
[4] BTFP 6 4 1210 125
[17] faithful 0 0 3904 97

according to the user requirement. Figure 7 shows the la-
tency and hardware cost of our ADD/SUB units at typi-
cal bit-widths. The basic arithmetic unit designs are tested
on Xilinx Virtex-II XC2V6000 FPGA as well as software
simulation. When the bit-width increases from 21 to 64,
the consumed slices increase from 0.8% to 5.1% of Virtex-
II XC2V6000 for ADD, and from 1.6% to 9.3% for SUB.
BRAMs increase from 1.4% to 9.0% for ADD (64-bit ADD
use fewer BRAMs than 53-bit, because we perform the G
ratio adjustment for 64-bit case), and from 2.1% to 14.9%
for SUB. These costs are acceptable for applications with
various accuracy requirements. However, the usage of
HMULs increases from 0.7% to 29.2% for ADD and from
2.8% to 58.3% for SUB. This makes it difficult to map high
precision LNS arithmetic units onto an FPGA board.

5. Benchmark Performance Evaluation

5.1. Evaluation Approach

With the automatic generation of LNS library and the
easy-to-use programming interface of ASC, we can effi-
ciently perform fast prototyping of LNS applications on
FPGA. We implement a number of practical benchmarks,
such as digital sine/cosine waveform generator (DSCG),

matrix multiplier, and radiative Monte Carlo simulation,
using different bit-width LNS units, to compare their accu-
racy, throughput and hardware cost with single and double
precision FLP designs. All the designs are fully-pipelined
in the throughput optimization mode of ASC.

To perform accuracy investigation, we develop a stream
value simulator, which performs a strict value simulation
of all the hardware arithmetics, such as addition, subtrac-
tion and roundings. The value simulator conforms to the
C++ syntax of ASC, and provides value results of the cir-
cuit which is accurate to the bit-level. It enables us to ana-
lyze the maximum and average errors of LNS designs. For
FLP designs, we assume that the accuracy behavior shall
conform to IEEE 754 standard, and use C++ float and dou-
ble data-types to provide an estimation of the errors. Values
calculated with C++ 128-bit long double data-type are used
as the true values for error analysis.

In DSCG and matrix multiplication, we compare our
LNS design with the FLP designs in [18]. These circuits
does not include convertors between LNS and FLP num-
bers. To compare the accuracy, we use 100-digit high-
precision calculation of Maple to convert the LNS results
into FLP values and evaluate the maximum and average er-
rors. For the radiative Monte Carlo simulation, we compare
with the FLP designs in [19]. As the design needs to com-
municate with software part that uses FLP, convertors from
and to FLP numbers are included.

5.2. Comparison Results

DSCG: a DSCG generates a sequence of discrete values
representative of a sine or cosine wave. The generator is a
common tool in digital signal processing and communica-
tion applications. In our benchmark evaluation, we imple-
ment a simple generator as follows:

0%

5%

10%

15%

20%

25%

30%

35%

21 32 42 53 64

LNS number bit-width

0

10

20

30

40

50

60

70

80

90
slices %
BRAM %
HMUL %
latency ns

(a) LNS ADD units for different bit-width.

0%

10%

20%

30%

40%

50%

60%

70%

21 32 42 53 64

LNS number bit-width

0

20

40

60

80

100

120
slices %
BRAM %
HMUL %
latency ns

(b) LNS SUB units for different bit-width.

Figure 7: Hardware resource cost and latency of faithful rounding LNS arithmetic units for different bit-widths. The integer
bits and fractional bits of each bit-width value are the same as the values shown in Table 1. The percentage of slices, BRAM
and HMUL are calculated based on Virtex-II XC2V6000, which has 33792 slices, 144 BRAMs and HMULs.

[
xn+1
yn+1

]
=

[
cosθ cosθ +1

cosθ −1 cosθ

][
xn
yn

]
.

LNS shows a much better accuracy in this application
compared to FLP. As shown in Table 5, for single-precision
cases, compared with 32-bit FLP design, 29-bit LNS design
already provides 11.1% smaller average error and 14.7%
higher throughput, with 9% more slices and 11 additional
BRAM. 32-bit LNS design provides even better accuracy,
but also consumes more hardware resources.

In 64-bit case, as mentioned in section 4.5, the high-
precision arithmetic units have a large overhead of mul-
tipliers, because all the multiplications in our polynomial
approximation use HMUL. A 64-bit mixed +/− unit al-
ready contains 84 HMULs, thus only one unit can be sup-
ported on common FPGA boards. Since this application
requires two mixed +/− units, instead of implementing all
of them with HMUL, we map 40% of the multipliers into
4-input look-up tables. This provides a 64-bit unit with
60 HMULs but more slices. Due to a big usage of large-
bitwidth multipliers, our LNS designs consume much more
resource than FLP designs in [18], but they provide a 15.9%
higher throughput and also smaller errors. The LNS-61 de-
sign provides a better accuracy than LNS-64 in this bench-
mark, possibly because some roundings at 61-bit randomly
produce better results.

Matrix Multiplication: as the whole processing of 3
by 3 matrix multiplication is generally too large to fit in
one FPGA, we compute one vector multiplication at one
time, with a state machine to calculate the matrix address
and schedule the process of the whole multiplication. As
shown in Table 5, our 32-bit LNS design provides a simi-
lar accuracy to 32-bit FLP, with 11.4% higher throughput,

but consumes over 50% more slices. For 64-bit units, the
LNS design again consumes more resource than FLP de-
sign due to the large number of multipliers needed for LNS
ADD/SUB, but it provides a 14.6% higher throughput.

Radiative Monte Carlo Simulation: M. Gokhale et al.
[19] presents an acceleration of Monte Carlo radiative heat
transfer simulation on FPGA, with FLP numbers. The sim-
ulation traces photons emitted from the surfaces of a 2-D
enclosure. The most inner loop, which is also the most
computationally intensive part, is implemented on FPGA.
It performs 12 multiplications, 1 division, 3 additions and
7 subtractions. Different from other benchmarks, we cal-
culate the errors based on the count of photons collected at
the end of the simulation rather than the values computed
during the process.

As a 64-bit LNS design is too large to map into a FPGA
board, only a 32-bit LNS design is implemented. Com-
pared with the single-precision FLP design [19], our design
doubles the throughput, uses 42% fewer HMULs, and has
16% smaller error in the photon counts, at the expense of
consuming over three times more slices and an additional
49 BRAMs.

6. Conclusion

This paper provides optimized LNS arithmetic targeting
reconfigurable hardware designs. In particular, we intro-
duce a polynomial approximation approach based on adap-
tive segmentation, and develop a library generator for LNS
application development and design exploration. The ba-
sic arithmetic units are tested on practical FPGAs as well
as software simulation. We also evaluate our method to

Table 5: Hardware cost, performance and accuracy of LNS benchmark designs, compared with FLP designs in [18] and [19].
BR stands for number of BRAMs used, and HM stands for number of HMULs used.

Number BR HM slices clock Error Number BR HM slices clock Error
Format cycle max average Format cycle max average

DSCG 32-bit Matrix Multiplication
FLP-32[18] 0 16 4000 11.6 6.03E-5 2.52E-6 FLP-32[18] 0 12 3375 12.3 3.86E-4 1.43E-7

LNS-29 11 16 4360 9.9 5.71E-5 2.24E-6 LNS-32 13 18 5191 10.9 2.81E-4 1.51E-7
LNS-32 11 18 5149 9.9 5.09E-5 2.06E-6 FLP-64[18] 0 27 8618 19.32 1.98E-13 2.05E-16

DSCG 64-bit LNS-64 34 120 27530 16.5 4.50E-14 2.30E-16
FLP-64[18] 0 36 9503 22.7 9.70E-14 3.98E-15 Monte Carlo Simulation

LNS-61 32 108 25364 19.0 3.44E-14 2.46E-15 FLP-32[19] 0 144 6758 29.9 1.93E-3 6.56E-4
LNS-64 32 120 27996 19.1 7.31E-14 3.07E-15 LNS-32 49 84 23239 14.2 1.68E-3 5.52E-4

show that the generated LNS arithmetic units have signif-
icant improvements over existing LNS designs. Our in-
frastructure for fast prototyping LNS FPGA applications
allows us to effectively study the logarithmic number rep-
resentation and its tradeoffs in speed and size when com-
pared with floating-point designs.

Current and future work includes further reducing the
hardware overhead for large bit-width LNS arithmetic
units, and investigating LNS on other applications that re-
quire more multiplication and division operations.

Acknowledgements. The support of UK Engineering and Phys-
ical Sciences Research Council (grant number EP/C509625/1)
and Xilinx Inc. is gratefully acknowledged. We also thank Mark
Shand of HP Labs for providing the Sepia card and his technical
support.

References

[1] E. Swartzlander, D. Chandra, H. Nagle, and S. Starks,
“Sign/Logarithm Arithmetic for FFT Implementation,”
IEEE Trans. Comput., vol. 32, no. 6, pp. 526–534, 1983.

[2] M. Haselman, M. Beauchamp, K. Underwood, and K. Hem-
mert, “A Comparison of Floating Point and Logarithmic
Number Systems for FPGAs,” in Proc. FCCM, 2005, pp.
181–190.

[3] D. Lewis, “An Accurate LNS Arithmetic Unit Using In-
terleaved Memory Function Interpolator,” in Proc. ARITH,
1993.

[4] B. Lee and N. Burgess, “A Parallel Look-up Logarithmic
Number System Addition/Subtraction Scheme for FPGA,”
in Proc. FPT, 2003, pp. 76–83.

[5] M. Arnold, T. Bailey, J. Cowles, and J. Cupal, “Redundant
Logarithmic Arithmetic,” IEEE Trans. Comput., vol. 39,
no. 8, pp. 1077–1086, Aug. 1990.

[6] C. Chen, R. Chen, and C. Yang, “Pipelined Computation
of Very Large Word-Length LNS Addition/Subtraction with
Polynomial Hardware Cost,” IEEE Trans. Comput., vol. 49,
no. 7, pp. 716–726, July 2000.

[7] J. Coleman, E. Chester, C. Softley, and J. Kadlec, “Arith-
metic on the European Logarithmic Microprocessor,” IEEE
Trans. Comput., vol. 49, no. 7, pp. 702–715, July 2000.

[8] V. Paliouras and T. Stouraitis, “A Novel Algorithm for Ac-
curate Logarithmic Number System Subtraction,” in Proc.
ISCAS, vol. 4, 1996, pp. 268–271.

[9] M. Arnold, “Improved Cotransformation for LNS Subtrac-
tion,” in Proc. ISCAS, vol. 2, 2002, pp. 752–755.

[10] R. Matousek, M. Tichy, Z. Pohl, J. Kadlec, C. Softley, and
N. Coleman, “Logarithmic Number System and Floating-
point Arithmetic on FPGA,” in Proc. FPL, 2002, pp. 627–
636.

[11] J. Detrey and F. de Dinechin, “A VHDL Library of LNS
Operators,” in Proc. 37th Asilomar Conference on Signals,
Systems and Computers, vol. 2, 2003, pp. 2227–2231.

[12] M. Arnold and C. Walter, “Unrestricted Faithful Rounding is
Good Enough for Some LNS Application,” in Proc. ARITH,
2001, pp. 237–246.

[13] D. Lee, A. A. Gaffar, R. Cheung, O. Mencer, W. Luk, and
G. Constantinides, “Accuracy guaranteed bit-width opti-
mization,” IEEE Trans. Computer-Aided Design, Nov. 2005.

[14] O. Mencer, “ASC, A Stream Compiler for Computing with
FPGAs,” IEEE Trans. Computer-Aided Design, 2006.

[15] D. Lee, A. A. Gaffar, O. Mencer, and W. Luk, “Optimiz-
ing hardware function evaluation,” IEEE Trans. Comput.,
vol. 54, no. 12, pp. 1520–1531, Dec. 2005.

[16] L. Moll, M. Shand, and A. Heirich, “Sepia: Scalable 3D
Compositing Using PCI Pamette,” in Proc. FCCM, 1999,
pp. 146–155.

[17] J. Detrey and F. Dinechin, “A Tool for Unbiased
Comparison between Logarithmic and Floating-
point Airthmetic.” http://www.ens-lyon.fr/LIP/Pub-
/Rapports/RR/RR2004/RR2004-31.ps.gz.

[18] C. H. Ho, P. H. W. Leong, W. Luk, S. J. E. Wilton, and
S. Lopez-Buedo, “Virtual Embedded Blocks: A Methodol-
ogy for Evaluating Embedded Elements in FPGAs,” in Proc.
FCCM, 2006, pp. 35–44.

[19] M. Gokhale, J. Frigo, C. Ahrens, J. Tripp, and R. Minnich,
“Monte Carlo Radiative Heat Transfer Simulation on a Re-
configurable Computer,” in Proc. FPL, LNCS 3203, 2004,
pp. 95–104.

