Comparing Floating-point and Logarithmic Number
Representations for Reconfigurable Acceleration

Haohuan Fu, Oskar Mencer, Wayne Luk

Department of Computing, Imperial College
London, United Kingdom
{hfu, oskar,wl}@doc.ic.ac.uk

Abstract— We investigate floating-point and logarithmic num-
ber representations for computing with FPGAs. The key issue is
to select the best number format for an application to improve
performance and accuracy. Using A Stream Compiler, ASC
as the hardware design and compilation tool, we develop a
convenient scheme to compare the designs of both floating-point
and logarithmic numbers and select the solution with the best
performance and accuracy. Our contributions are: (1) optimized
function evaluations for conversions between logarithmic and
floating-point numbers; (2) design and implementation of loga-
rithmic arithmetic, with optimized segmentation and polynomial
degree; (3) a practical comparison case study of Monte Carlo
radiative heat transfer simulation. Compared to prior work, our
design supports two to six times more LNS conversion and LNS
arithmetic units on one FPGA. For Monte Carlo simulation,
our designs of both number systems produce 39-80% higher
throughput with either a smaller area or a higher accuracy.

I. INTRODUCTION

With the development of electronic technologies, current
FPGA devices have millions of look-up tables (LUTs), reg-
isters, dedicated hardware multipliers and even microproces-
sors. The improvement of capabilities makes the resource-
consuming floating-point and logarithmic number systems
(LNS) also applicable to FPGAs.

Floating-point and LNS numbers have a similar represen-
tation range, but their arithmetic behaviors differ greatly. An
application implemented with one number format has quite
different accuracy and performance compared with the same
one implemented with the other format [1], [2]. To improve
performance and accuracy of an application, we develop a
scheme to compare designs of both number formats. As
shown in Figure 1, using A Stream Compiler, ASC [3] as the
hardware design and compilation tool, we generate designs of
the application in both number formats and make comparisons
to find out the solution with best accuracy and performance.

Targeted as an approach for comparison between floating-
point and LNS representations, our scheme includes basic
arithmetic support for both number formats and provides an
interface to build up an application with floating-point or LNS
numbers. Our contributions are:

1) For conversions between floating-point and LNS num-
bers, we develop optimized evaluation for functions
y = logy(x) and y = 27,

Application
Description

v v

LNS
Implementations

Floating-point
I mplementations

t Performance & Accuracy J
Comparison

v

FPGA Design with Best
Performance & Accuracy

Fig. 1. General procedure of the comparison scheme.

2) In order to provide efficient LNS arithmetic support
in the comparison scheme, we design and implement
optimized evaluation methods using polynomial approx-
imation for LNS addition and subtraction.

3) To demonstrate the feasibility of our scheme, we per-
form a practical case study of Monte Carlo radiative heat
transfer simulation. The results show that our scheme
can generate high-performance implementations with
both number representations.

II. BACKGROUND

Given the same bit-widths, floating-point and LNS numbers
provide similar representation ranges. However, the arithmetic
implementations of the two are quite different. For floating
point numbers, addition and subtraction are simple; multipli-
cation and division are difficult, while exponential operations
are even more difficult. In contrast, multiplication, division
and exponential operations are easy for LNS, but addition and
subtraction are extraordinarily difficult.

Suppose a and b are the logarithmic forms of numbers A
and B (A > B), thus A = 2% and B = 2°. The basic LNS
arithmetic operations of these two numbers are as follows:

Maple:

Coefficient Generation Cofficient Files

v
Matlab:
Bitwidth Optimization and G
Hardware Description File Generation

|

ASC:
Area, Latency, Throughput Optimization
Place & Route, Synthesis

Fig. 2. Work flow: generating the polynomial approximation design.
MUL: Ax B=2%x 2b — 2a+b.

DIV: A+~ B =294+ 9b_9a-b

ADD: A+ B =204 20 = 20108 (142777,

SUB: A~ B=2%—2b=2btlos""~1),

Thus, we can perform LNS MUL/DIV with fixed-point
addition or subtraction, but for LNS ADD/SUB we need to
evaluate f1(z) = logy(1 + 2%) and fa(x) = log,(2* — 1),
which are non-linear and difficult to evaluate.

There are existing works on comparisons between different
number representations for FPGA. Based on the arithmetic
of the LNS microprocessor [4], Matousek et al. [2] present
a comparison between LNS and floating-point numbers on
FPGA. However, the benchmark application has only one
addition and many DIV/MUL and exponential operations,
which clearly favors the LNS.

J. Detrey et al. [5] provide a tool for comparison between
logarithmic and floating-point FPGA designs. The tool in-
cludes libraries of parameterized arithmetic operations for the
two number systems. They also show comparison examples
such as a 3D transformation pipeline. However, as mentioned
by the authors, the example is not a practical application on
FPGA.

The most recent work is a comparison between floating-
point and LNS for FPGAs [6]. It presents and compares all
the basic operators for two different number representations
in both 32-bit and 64-bit bit-widths. However, there is still no
comparison or analysis of an FPGA application.

III. LNS DESIGN AND IMPLEMENTATION

The major part of the implementation for LNS is to evaluate
four non-linear functions. For conversions between floating-
point and LNS numbers, the logarithmic function y = log, ()
and the exponential function y = 2% need to be evaluated.
Besides, as noted in section II, for LNS ADD/SUB, f; and
f2 also need to be evaluated.

In our scheme, we evaluate all four functions using poly-
nomial approximation with Maple, Matlab and ASC. We

TABLE 1
PERFORMANCE RESULTS OF OUR 32-BIT LNS CONVERSION UNITS,
COMPARED WITH THE EXISTING DESIGN [6]. THR REFERS TO OUR
DESIGN OPTIMIZED FOR THROUGHPUT, WHICH IS FULLY PIPELINED; LAT
REFER TO OUR DESIGN OPTIMIZED FOR LATENCY. HMULS ARE
HARDWARE MULTIPLIERS AND BRAMS ARE BLOCK RAMS IN THE FPGA.
NUMBER OF UNITS PER FPGA IS CALCULATED FOR THE VIRTEX-4

XC4VLX200.
Functions y = log, () y =2

Designs [6] [THR | LAT [6] | THR | LAT

units/FPGA 14 32 32 4.8 32 32
slices 163 | 648 | 398 236 | 706 | 442

18x18 HMUL 0 3 3 20 3 3

18K BRAM 24 7 7 4 7 7
clk cycle(ns) 76 8.2 61.3 72 9.4 49.0

latency(cycles) 1 13 1 1 13 1
NOPS(Mhz) 132 | 122 | 163 || 139 | 106 | 20.4

currently support a 32-bit LNS format with 8 magnitude bits
and 23 fractional bits, which has a range and precision similar
to single-precision floating-point.

A. Polynomial Approximation

Our general work flow for generating the polynomial ap-
proximation design of a function is shown in Figure 2.

We use Maple to generate the coefficients for polynomial
approximations by the Minimax algorithm. With the coeffi-
cients, Matlab then generates the design for the polynomial
approximation, and optimizes the bit-width of variables with
an approach based on the adaptive simulated annealing (ASA)
method [7]. The design described in ASC C++ syntax is then
forwarded to the ASC compiler to be converted into circuit
design of the function unit.

For each function, we enumerate different polynomial de-
gree values, experiment with both uniform and non-uniform
segmentation methods to find out the optimal choices. In
our scheme, we use a simplified version of the hierarchical
segmentation approach [8] as the non-uniform segmentation
method.

B. LNS Conversion Functions

For functions y = log,(z) and y = 2%, the approximation
procedure is divided into three steps:

1) Range Reduction: reduce x into a smaller interval.

2) Function Evaluation: approximate the value of the func-

tion in the reduced interval with polynomials.

3) Range Reconstructions: map the result value in the

reduced interval back into the full range of z.

Based on the functions’ mathematical properties and repre-
sentation formats, we reduce the input value to the interval of
[1,2) for y = log,(x) and [0,1) for y = 2”. Based on extensive
experiments for different polynomial degree values and seg-
mentation methods, we evaluate the conversion functions with
the following design procedures: with an approximation error
requirement of 2723 for 32-bit LNS numbers, y = log, ()
is calculated by a degree-two polynomial with 128 uniform

TABLE 11
PERFORMANCE RESULTS OF BASIC 32-BIT LNS ARITHMETIC UNITS. ‘ADD0’ AND ‘SUB0O’ REFER TO THE EXISTING DESIGN [6]. ‘ADD_T’ AND ‘ADD_L’

REFER TO OUR ADDITION DESIGNS OPTIMIZED FOR THROUGHPUT AND LATENCY RESPECTIVELY, WITH A POLYNOMIAL DEGREE OF TWO. ‘SUB2’, ‘SUB3’
AND ‘SUB4’ REFER TO OUR SUBTRACTION DESIGNS WITH DIFFERENT POLYNOMIAL DEGREE OF TWO, THREE AND FOUR. HMULS ARE HARDWARE

MULTIPLIERS AND BRAMS ARE BLOCK RAMS IN THE FPGA. NUMBER OF UNITS PER FPGA IS CALCULATED FOR THE VIRTEX-4 XC4VLX200.

function addition subtraction

unit add0 [6] [add_t | addI [[subO [6] | sub2_t [sub2.1 [sub3_t | sub31 [sub4_t | subd.l

units/FPGA 4 16 16 4 124 124 12 12 8 8
slices 750 1775 | 932 838 2170 1168 2412 1259 2773 1427

18x18 HMUL 24 6 6 24 6 6 8 8 12 12

18K BRAM 4 7 7 8 27 27 14 14 12 12
clk cycle(ns) 91 7.9 96 95 16.0 112.0 12.5 141.1 16.6 168.3

latency(cycles) 1 25 1 1 27 1 32 1 37 1
NOPS(Mhz) 11.0 127 10.4 10.5 62.5 8.93 80.0 7.09 60.2 5.94

segments; the function y = 2% is calculated by a degree-two
polynomial with 64 uniform segments.

Table I shows the performance results of our conversion
units, compared with a previous design [6]. As our hardware
compilation tool ASC supports different optimization options,
circuit designs optimized for throughput and latency are both
implemented. Our throughput-optimized designs, which are
fully pipelined, consume three to four times more slices than
the previous one [6], but they have a much smaller clock cycle
and provide eight to nine times higher throughput. Our latency
designs also show a 20-30% smaller latency than the previous
one [6]. Meanwhile, the previous designs [6] consume 20
multipliers or 24 Block RAMs (BRAMs) for each unit, which
greatly constrain the maximum number of units that can be
supported in one FPGA. For the Virtex-4 XC4VLX200 FPGA,
our designs support two to six times more units.

C. LNS Addition & Subtraction

As noted in section II, the ADD/SUB design is the most
difficult in providing building blocks for LNS arithmetic.
Without the mathematical properties like y = log,(x) and
y = 2%, the range of f; and f5 cannot be reduced and the
whole interval of [0, 256) needs to be approximated.

Based on extensive experiments for different polynomial
degree values and segmentation methods, we implement LNS
ADD/SUB with the following design procedures: both func-
tions use a non-uniform segmentation to reduce the number of
segments to an acceptable range; degree of two is an optimal
value for LNS ADD while degree of two, three and four are
all good candidates for LNS SUB, as some of them consume
fewer multipliers and others consume fewer BRAMs.

Table II shows the performance results for our ADD/SUB
units, compared with a previous design [6]. Our designs
optimized for latency consume 20-30% more slices, more
BRAMs, but much less hardware multipliers than the previous
one. And the latency values are similar. Our designs optimized
for throughput are fully pipelined. They consume 2.3 to 3.3
times more slices, but provide a much smaller clock cycle
with six to eleven times higher throughput. Meanwhile, same
as the conversion units, the ADD/SUB units in [6] consume 24
multipliers for each unit, which greatly constrain the maximum

number of units supported in one FPGA. With the Virtex-4
XC4VLX200 FPGA, our design supports two to four times
more ADD/SUB units.

Generally, although consuming more resources, our design
offers higher throughput, more units on a board, and a more
extensive support with different settings.

IV. CASE STUDY: MONTE CARLO SIMULATION
A. Introduction to the Application

M. Gokhale et al. [9] presents an acceleration of Monte
Carlo radiative heat transfer simulation on FPGA, with
floating-point numbers. The simulation traces photons emitted
from the surfaces of a 2-D enclosure. It records how many
photons emitted from surface ¢ are absorbed at surface j and
then uses the recorded numbers to compute a heat transfer co-
efficient. The whole application is made up of several different
levels of loops. The most inner loop, which is also the most
computationally intensive part, is extracted and implemented
on FPGA. The loop checks the photons for intersection of the
surfaces. It performs 12 multiplications, 1 division, 3 additions
and 7 subtractions in a 11-stage pipeline.

In this paper, the same application is investigated as a case
study of our comparison scheme. We implement it with both
single-precision floating-point and 32-bit LNS to compare the
performance and accuracy.

DIVI and DIV2 are our floating-point designs with two
different division implementations: DIV 1 uses general division
and DIV2 uses polynomial approximation for the division,
which is a reciprocal operation. P2, P3 and P4 are our LNS
designs, which respectively use the degree-two, degree-three
and degree-four designs of the LNS SUB operation.

B. Comparison of Performance and Accuracy

Table III shows the performance and accuracy of our Monte
Carlo hardware designs, compared with the original work [9].
All the designs are mapped into the Virtex-II XC2V6000
FPGA for performance testing.

For our floating-point designs, DIV1 has a similar clock
cycle to the original design [9], but it uses fewer LUTSs
and much fewer hardware multipliers. DIV2 has the smallest
clock cycle of all the different implementations, which results

TABLE III
COMPARISON OF PERFORMANCE AND ACCURACY FOR DIFFERENT MONTE CARLO DESIGNS. DIV1 AND DIV2 REFER TO OUR FLOATING-POINT DESIGNS

WITH DIFFERENT DIVISION IMPLEMENTATIONS. P2, P3 AND P4 REFER TO OUR LNS DESIGNS WITH DIFFERENT LNS SUB IMPLEMENTATIONS. HMULS
ARE HARDWARE MULTIPLIERS AND BRAMS ARE BLOCK RAMS IN THE FPGA. ALL THE DESIGNS ARE MAPPED INTO THE VIRTEX-II XC2V6000.

clk cycle | latency 18x18 18K absolute error relative error
Version (ns) (cycles) | LUTs | HMUL | BRAM | max(x10°) | mean | max(x10~") | mean(x10~")

[91 29.9 41 20% 100% 8% n/a n/a n/a n/a
DIVl 29.6 114 18% 33% 8% 2.487 9.611 9.104 4.131
DIV2 16.4 74 12% 35% 10% 2.488 9.612 10.99 4.414

P2 21.3 110 31% 54% 84% 2177 9.067 7.565 3.870

P3 26.3 120 35% 63% 45% 2.177 9.067 7.565 3.870

P4 n/a 130 36% 83% 38% 2.177 9.067 7.565 3.873

in a throughput 80% higher than the original design. DIV2
also uses the least LUTs. DIV2’s BRAM usage is a little
higher than DIV1 and the original design, due to the cost of
polynomial approximation for reciprocal. The original design
[9] uses all the multipliers on the board, and only supports one
pipeline on a FPGA, while DIV1 and DIV2 consume 33-35%
multipliers, and support at least two pipelines and double the
throughput.

For LNS designs, P4 does not have a clock cycle result,
because the design contains 34 BRAMs and 120 multipliers.
The multiplier site adjacent to the location of a BRAM must
remain free because of resource sharing. Thus it cannot be
mapped into Virtex-II XC2V6000 which only has 144 multi-
pliers. P2 and P3 have a smaller clock cycle than the original
version, which indicates 14-40% higher throughput. With the
polynomial degree increasing from P2 to P4, the number of
clock cycle, latency and usage of multipliers increases, but the
usage of BRAM decreases. Thus, the three different versions
can be used to deal with different situations.

As shown in Table III, the original work [9] gives no results
about the errors of calculated values. For our implementations,
DIV2 has slightly larger errors than DIV1, and the three
LNS versions, P2, P3, and P4, have almost the same error
values. For the comparison between floating-point and LNS
implementations, LNS has better accuracy. Its mean absolute
and relative errors are 6% smaller than the floating-point
version, while the maximum errors are 13-17% smaller.

Therefore, for this Monte Carlo application, both the
floating-point and LNS implementations generated by our
scheme are efficient and have a better throughput than the
original work [9]. Compared with each other, the floating-
point version DIV2 has a smaller clock cycle than LNS
versions, resulting in a higher throughput. The LNS versions
generally consume more hardware resource than the floating-
point versions, but they provide better accuracy.

V. CONCLUSIONS

In summary, we develop a semi-automated scheme to com-
pare different hardware designs using floating-point or LNS
representations, which enables us to select a solution with
the best performance and accuracy. Using Maple, Matlab and
ASC, our work provides an efficient design and implementa-
tion of LNS conversions and arithmetic.

Compared to prior work [6], we support two to six times
more LNS conversion and LNS ADD/SUB units in one FPGA.
To demonstrate the feasibility of our scheme, we test the im-
plementation with a practical FPGA application, Monte Carlo
radiative heat transfer simulation. Our scheme generates high-
performance implementation with both floating-point and LNS
numbers, and provides a comparison to improve performance
and accuracy.

The plan for future work includes: (1) As our current LNS
arithmetic units still consume a large amount of hardware
resources, it is important to refine our design to improve
the efficiency. (2) We will also use our scheme to make
comparisons of other typical applications, such as encryption
and multimedia processing procedures, to further investigate
the optimization of number representations.

ACKNOWLEDGMENT
This work is supported by EPSRC grant no. EP/C509625/1.

REFERENCES

[1] E. Swartzlander, D. Chandra, H. Nagle, and S. Starks, “Sign/Logarithm
Arithmetic for FFT Implementation,” IEEE Trans. Comput., vol. 32, no. 6,
pp. 526-534, 1983.

R. Matousek, M. Tichy, Z. Pohl, J. Kadlec, C. Softley, and N. Coleman,
“Logarithmic Number System and Floating-point Arithmetic on FPGA,”
in Proc. FPL, 2002, pp. 627-636.

0. Mencer, “ASC, A Stream Compiler for Computing with FPGAs,” [EEE
Trans. Computer-Aided Design, 2006.

J. Coleman, E. Chester, C. Softley, and J. Kadlec, “Arithmetic on the
European Logarithmic Microprocessor,” IEEE Trans. Comput., vol. 49,
no. 7, pp. 702-715, July 2000.

J. Detrey and F. Dinechin, “A Tool for Unbiased Comparison be-
tween Logarithmic and Floating-point Airthmetic.” http://www.ens-
lyon.fr/LIP/Pub/Rapports/RR/RR2004/RR2004-31.ps.gz.

M. Haselman, M. Beauchamp, K. Underwood, and K. Hemmert, “A
Comparison of Floating Point and Logarithmic Number Systems for
FPGAs,” in Proc. FCCM, 2005, pp. 181-190.

D. Lee, A. A. Gaffar, O. Mencer, and W. Luk, “Optimizing hardware
function evaluation,” IEEE Trans. Comput., vol. 54, no. 12, pp. 1520—
1531, Dec. 2005.

D. Lee, W. Luk, J. Villasenor, and P. Cheung, ‘“Hierarchical segmentation
schemes for function evaluation,” in Proc. FPT, 2003, pp. 92-99.

M. Gokhale and et al., “Monte Carlo Radiative Heat Transfer Simulation
on a Reconfigurable Computer,” in Proc. FPL, LNCS 3203, 2004, pp.
95-104.

[2]

[3]
(4]

(3]

(6]

(71

(8]
[9]

