
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Accuracy Guaranteed Bit-Width Optimization
Dong-U Lee, Member, IEEE, Altaf Abdul Gaffar, Member, IEEE, Ray C.C. Cheung, Student Member, IEEE,
Oskar Mencer, Member, IEEE, Wayne Luk, Member, IEEE, and George A. Constantinides, Member, IEEE

Abstract— We present MiniBit, an automated static approach
for optimizing bit-widths of fixed-point feedforward designs
with guaranteed accuracy. Methods to minimize both the in-
teger and fraction parts of fixed-point signals with the aim of
minimizing circuit area are described. For range analysis, our
technique identifies the number of integer bits necessary to meet
range requirements. For precision analysis, we employ a semi-
analytical approach with analytical error models in conjunction
with adaptive simulated annealing to optimize the number of
fraction bits. The analytical models enable us to guarantee
overflow/underflow protection and numerical accuracy for all
inputs over the user-specified input intervals. Using ASC, A
Stream Compiler for field-programmable gate arrays (FPGAs),
we demonstrate our approach with polynomial approximation,
RGB to YCbCr conversion, matrix multiplication, B-splines and
discrete cosine transform placed-and-routed on a Xilinx Virtex-4
FPGA. Improvements for a given design reduce area and latency
by up to 26% and 12% respectively, over a design using optimum
uniform fraction bit-widths. Studies show that MiniBit optimized
designs are within 1% of the area produced from integer linear
programming approach.

Index Terms— Field programmable gate arrays, finite
wordlength effects, fixed point arithmetic, optimization methods,
simulated annealing.

I. INTRODUCTION

ONE of the main objectives of hardware designers is to
find the optimal design in terms of area, latency, through-

put and power consumption. Bit-widths of signals are one
of the parameters that designers can tweak to improve these
metrics. In contrast to instruction processors, customizable
hardware such as field-programmable gate arrays (FPGAs)
and application-specific integrated circuits (ASICs) provide the
freedom for bit-widths optimized for a given application. How-
ever, hardware designers face increasing difficulties choosing
the best bit-widths. The objective is to find the minimal
number of bits to represent a signal, while satisfying user-
defined error constraints. A naive way to optimize bit-widths
is to manually evaluate various combinations and observe the
output for each design. This technique, however, involves an
enormous search space and is not practical for large designs.

Bit-width optimization is an NP-hard problem [1] and has
been the focus of numerous research contributions, especially
over the past few years. The work in this area can be classified

Manuscript received June 30, 2005; revised October 4, 2005; accepted
November 5, 2005. This paper was recommended by the Associate Editor
Raul Camposano.

D. Lee is with the Electrical Engineering Department, University of
California, Los Angeles, USA. (Email: dongu@icsl.ucla.edu).

A. Abdul Gaffar and G.A. Constantinides are with the Department of
Electrical and Electronic Engineering, Imperial College London, United
Kingdom (Email: {altaf.gaffar, g.constantinides}@imperial.ac.uk.)

R.C.C Cheung, O. Mencer and W. Luk are with the Department of
Computing, Imperial College London, United Kingdom (Email: {r.cheung,
o.mencer, w.luk}@imperial.ac.uk).

in many different ways, and one such classification is static
analysis versus dynamic analysis. Dynamic analysis [2]–[7]
relies on the use of stimuli input signals. Though this approach
provides bit-widths closer to the optimal set for those particu-
lar stimuli when compared to static analysis techniques, it can
be problematic since a large set of stimuli signals is required to
analyze a design with sufficient confidence, possibly leading
to prohibitively long simulation times and without guarantees
for alternative input stimuli encountered in practice. Static
analysis [8]–[12] is believed to give more conservative bit-
width estimates than dynamic analysis. Static analysis is often
more attractive than dynamic analysis especially for large
designs, since only the characteristics of the input signals are
needed. In this work, we adopt a static analysis technique
based on affine arithmetic [13] and analytical error models
to optimize both ranges and precisions for the signals in a
fixed-point design.

Another way of classifying bit-width optimization involves
an error metric. Most existing work is based on the signal to
noise ratio (SNR) error criterion. The SNR criterion is popular
with digital signal processing applications. On the other hand,
many computer arithmetic and scientific applications require a
maximum absolute error bound. This error metric is good for
portability, especially when a module needs to be integrated
into a larger design. Our criterion for evaluating the accuracy
is the unit in the last place (ulp). The ulp of a fixed-point
number with eight bits of fraction bit-width would be 2−8.
Faithful rounding means that results are accurate to 1 ulp
(rounded to the nearest or the next nearest) and exact rounding
means that results are accurate to 0.5 ulp (rounded to the
nearest). Exact rounding is difficult to achieve, due to a
problem known as the Table maker’s dilemma [14] and has
a large area penalty [15], hence we opt for faithful rounding
in this initial work. Therefore, if the result has eight fraction
bits, our approach guarantees a maximum absolute error of
less than or equal to 2−8.

The main contributions of this paper are:
• Analytical range and uniform fraction bit-width deter-

mination, based on affine arithmetic models introduced
in [9].

• Multiple fraction bit-width determination via adaptive
simulated annealing, using error models and area cost
functions with guaranteed maximum absolute error
bounds.

• Demonstration of our approach with five case studies:
polynomial approximation, RGB to YCbCr conversion,
matrix multiplication, B-splines and, DCT realized in a
Xilinx Virtex-4 FPGA.

• The only reported static bit-width optimization technique
that can guarantee 1 ulp maximum absolute error bound.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

B
it
-
width
A
nalysis

Precision
A
nalysis
Range
A
nalysi
s

Static

Analysis

Dynamic

Analysis

Static

Analysis

Dynamic

Analysis

Fig. 1. Classification of bit-width analysis

The rest of this paper is organized as follows. Section II
discusses background material and related work. Section III
presents an overview of our MiniBit bit-width optimization ap-
proach. Section IV introduces affine arithmetic. Section V and
Section VI presents our range analysis and precision analysis
steps. Section VII describes how our bit-width analysis can
be extended to cover resource sharing situations. Section VIII
and Section IX present our case studies and their results with
MiniBit. Section X gives conclusions and future work.

II. BACKGROUND

As shown in Fig. 1, the problem of optimizing the design
bit-widths can be split into two parts: range analysis and
precision analysis.

Range analysis involves studying the data range of the
computation and ensuring that the signals in the design have
enough bits to accommodate this range. Precision analysis
involves analyzing the sensitivity of the output from a compu-
tation to slight changes in the bit-widths. More specifically, the
sensitivity of an output to the computational precision within
an arithmetic unit. For both range and precision analysis, we
can apply a dynamic or a static analysis method.

Dynamic analysis methods evaluate the data flow graph
(DFG) of the design using input stimuli signals. However,
static analysis methods propagate static characteristics of the
inputs through the DFG and hence no input stimuli are re-
quired. The input data dependence of dynamic analysis and the
input data independence of static analysis have consequences
on the results of the bit-width analysis.

As discussed next in the review of existing work in bit-width
optimization, both these methods have certain advantages and
disadvantages over each other.

A. Existing Work

A large body of work has been produced by Sung et
al. [4], [5] which uses simulation-based techniques for range
and precision bit-width optimization. Their approach involves
examining the mean and the standard deviations of the signals.
Signals are grouped together during optimization to reduce
simulation time. One of the drawbacks of this approach is
that there is a danger of overflows for rare events.

The FRIDGE [7] project provides a bit-width optimiza-
tion system for hardware/software co-design. FRIDGE uses
interval arithmetic-based range propagation techniques for
the range optimization and a simulation-based approach for
the precision optimization. This approach relies on bit-width

specification of some of the signals by the user, and derives the
remaining signal bit-widths through what the authors describe
as interpolation. In order to speed up the simulation time, the
authors convert the hardware designs into integer based ANSI
C descriptions before simulation.

In [3], Cmar et al. use interval arithmetic for range bit-width
determination and a dynamic method based on simulation for
precision bit-width optimization. The simulation operates by
simultaneously performing the same calculation in a reference
floating-point and a custom fixed-point format, and comparing
the error between the two values. A heuristic is employed
where the mean and the standard deviation of the error at each
signal are examined for determining the precision bit-widths.

In [6] Shi and Brodersen describe a statistical modeling
method based on perturbation theory. For bit-width opti-
mization, the method is designed to target optimization of
algorithms used in communications applications. One feature
of this approach is that it is data dependent due to its use of
statistical modeling.

Abdul Gaffar et al. [2] use a mathematical technique known
as automatic differentiation to perform precision bit-width
optimization for both fixed-point and floating-point designs.
Automatic differentiation is used to monitor the sensitivity of
the output signals with respect to the intermediate signals. The
proposed method requires less simulation time than conven-
tional dynamic approaches.

Nayak et al. [16] describe a data range propagation method
designed for the MATCH [17] system, which converts Matlab
designs to FPGA design descriptions. Their range optimiza-
tion relies on data range propagation, while precisions are
optimized by forward propagation of errors through the data
flow graph. A set of error transfer functions are proposed to
determine the error contribution of each node.

Constantinides et al. propose Synoptix [8], an optimization
technique targeting linear time invariant digital signal pro-
cessing systems using a novel resource binding technique.
Synoptix uses a technique based on saturation arithmetic to
perform the range bit-width optimization. In recent work [18]
the proposed approach is extended to cover non-linear systems,
but this extension requires input stimuli to operate.

Fang et al. [9], [10] employ affine arithmetic for modeling
range and precision analysis. While the use of affine arithmetic
to model precision error is demonstrated, the authors do not
use it to optimize the actual bit-widths.

B. Discussion

In summary, for range analysis, most of the existing work
considered use static analysis [3], [7]–[9], [16] with a few
using dynamic analysis [2], [4]–[6]. For precision analysis, dy-
namic methods are employed by [2]–[7], while static methods
are employed by [8], [9], [16]. Static analysis as we show in
this paper is capable of providing guaranteed analytical bounds
on the output error.

Similar to Fang et al., our proposed technique, MiniBit,
uses static range analysis based on affine arithmetic. However,
we go a step further and tackle the problem of precision
optimization problem as well. Our static precision optimization

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

I
n
p
u
t

D
e
s
i
g
n

D
e
s
c
r
i
p
t
i
o
n

M
i
n
i
B
i
t

I
n
p
u
t

P
a
s
s

E
r
r
o
r

F
u
n
c
t
i
o
n

G
e
n
e
r
a
t
i
o
n

C
o
s
t

F
u
n
c
t
i
o
n

G
e
n
e
r
a
t
i
o
n

B
i
t
-
W
i
d
t
h

O
p
t
i
m
i
z
e
d

F
i
x
e
d
-
P
o
i
n
t

D
e
s
i
g
n

R
a
n
g
e

A
n
a
l
y
s
i
s

M
i
n
i
B
i
t

O
u
t
p
u
t

P
a
s
s

O
p
t
i
m
u
m

U
n
i
f
o
r
m

F
r
a
c
t
i
o
n

B
i
t
-
W
i
d
t
h

S
i
m
u
l
a
t
e
d

A
n
n
e
a
l
i
n
g

P
r
e
c
i
s
i
o
n

A
n
a
l
y
s
i
s

R
a
n
g
e
s

O
p
t
i
m
i
z
e
d

I
n
t
e
g
e
r

B
i
t
-
W
i
d
t
h
s

O
p
t
i
m
i
z
e
d

F
r
a
c
t
i
o
n

B
i
t
-
W
i
d
t
h
s

Fig. 2. Overview of the MiniBit automated bit-width optimization approach.

approach is able to guarantee a maximum absolute error bound
analytically, which is what differentiates our work with the
studies discussed in this section.

III. OVERVIEW

An overview of the MiniBit bit-width optimization frame-
work is given in Fig. 2. MiniBit targets hardware designs
using fixed-point representation. Fixed-point is often preferred
over floating-point for hardware designs involving reasonable
dynamic ranges due to its area and speed advantages. In
fixed-point representation, a real number is represented by
two parts: an integer part which represents the range, and
a fraction part which represents the precision. Two’s com-
plement representation is assumed. The range of a signal x
with IBx integer bits and FBx fraction bits is given by
[−(2IBx−1 − 2−FBx + 1), 2IBx−1 − 2−FBx].

We divide the bit-width optimization problem into two
tasks: range analysis and precision analysis. Range analysis
involves determining the integer bit-widths (IBs) and precision
analysis involves the determination of the required fraction
bit-widths (FBs) of fixed-point signals. Our approach is imple-
mented as a series of compilation passes inside MiniBit, which
is built on top of the BitSize bit-width analysis system [2]. The
input to MiniBit is a design description in ASC [19], C/C++
or Xilinx System Generator [20]. The MiniBit input pass uses
this design description together with user-supplied information
including the output error specification and the range of the
input of values to perform range and precision analysis.

We first perform range analysis, then pass the range results
to the precision analysis phase. Precision analysis requires an
error function and a cost function. The error function captures

the output error as a function of the bit-width of the signals of
the design. The cost function returns the area cost as a function
of the signal bit-widths and their arithmetic operators.

Range analysis is performed via standard affine arithmetic.
Precision analysis operates in two phases: (1) using the er-
ror function generated by MiniBit, we analytically find the
optimum uniform fraction bit-width (UFB), which means the
fraction bit-width for all signals are the same. The UFB serves
as the initial set of parameters for the next phase. (2) we use
both the error and cost functions to find the optimum multiple
fraction bit-widths (MFBs), which in contrast to UFB means
that the fraction bit-widths of the signals can be different.
MFBs aim at minimizing the area cost function, while meeting
the constraints of the error function. The MFBs are found by
using adaptive simulated annealing (ASA) [21], [22].

Once the signals have been quantized, the ranges found in
the range analysis phase will slightly differ due to finite preci-
sion effects. Hence, range is a function of precision. However,
as it will be shown in Section VI, precision is a function
of range. Since the actual range can marginally change after
quantization, the range assumed during the precision analysis
phase can no longer be guaranteed to be perfectly accurate. In
combination, these factors could in theory lead to increased
IB requirements and/or increased FB requirements. Both of
these potential problems can be addressed by using more
conservative range estimates. However, these problems are
highly unlikely to occur since 1) only the ranges that are very
close to a power of two can cause larger IB requirements,
and 2) due to the conservative nature of the precision analysis
(which assumes maximum quantization errors can happen at
all signals concurrently), the slight inaccuracy in the range will
have negligible impact. For the designs covered in this work,
we have not encountered such problems.

Having found the optimized IBs and FBs to each signal,
the MiniBit output pass compares the outputs produced from
our bit-width optimized fixed-point design against the outputs
produced from a software verification model. This step verifies
that overflows/underflows do not occur and the user-specified
error requirements are met. We finally synthesize and place-
and-route the design to target technologies such as FPGAs or
ASICs.

IV. AFFINE ARITHMETIC

Interval arithmetic (IA) [23] was invented in the 1960s
by Moore to solve range problems, where each signal is
represented by its interval. A signal x is represented by the
interval x̄ = [xmin, xmax], meaning that the true value of x
lies between xmin and xmax. Thus, for instance, the difference
of two intervals x̄ and ȳ is expressed as

x̄− ȳ = [xmin − ymax, xmax − ymin]

The main disadvantage of IA is the assumption that all
values of the arguments vary independently over the given in-
tervals, potentially leading to drastic overestimation of the true
range. As an extreme example, when evaluating the expression
x−x, we get the interval x̄−x̄ = [xmin−xmax, xmax−xmin],
which is twice as wide as the original interval x̄, instead of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

[0, 0], which is the true range. This overestimation effect can
accumulate along the computation chain, resulting in an “error
explosion”.

Affine arithmetic (AA) [13] is a recent refinement to IA
to address this problem. AA captures all of the features
of IA with one significant improvement: it keeps track of
correlations among intervals. In AA, the uncertainty of a signal
x is represented by an affine form x̂, which is a first degree
polynomial

x̂ = x0 + x1ε1 + x2ε2 + · · ·+ xnεn where εi = [−1, 1]

Each εi is an independent uncertainty source that contributes
to the total uncertainty of the signal x. An ordinary IA interval
x̄ = [xmin, xmax] can be converted into an equivalent affine
form x̂ = x0 + x1ε1 with

x0 = xmax+xmin
2 x1 = xmax−xmin

2

The key feature of AA is that the sample noise symbol εi
can contribute to the uncertainty of other signals in the com-
putation chain, keeping correlations between them. Returning
to the previous example where IA overestimated, if x has the
affine form x̂ = x0 +x1ε1 then x̂−x̂ = 0, which is the correct
result.

In affine arithmetic form, we write 1) addition/subraction,
2) constant multiplication and 3) addition/subraction with a
constant as

x̂± ŷ = (x0 ± y0) +

n∑

i=1

(xi ± yi)εi

cx̂ = (cx0) +
n∑

i=1

(cxi)εi

x̂± c = (x0 ± c) +
n∑

i=1

xiεi

For multiplication, we get

x̂ŷ = (x0 +
n∑

i=1

xiεi)(y0 +
n∑

i=1

yiεi)

= x0y0 +
n∑

i=1

(x0yi + y0xi)εi +Q

where Q = (

n∑

i=1

xiεi)(

n∑

i=1

yiεi)

The equation above is not in affine form, due to the quadratic
term Q. Hence, a conservative approximation is taken:

Q ≈ uvεn+1 where u =
n∑

i=1

|xi| v =
n∑

i=1

|yi|

Affine forms for other elementary operations such as divi-
sion and square root are given in [13]. It has been shown that
affine arithmetic gives tighter bounds than interval arithmetic
for both fixed-point [9] and floating-point designs [10].

a
= [
-
3
,
2
]
 b
= [
4
,
8
]
 c
=
4
.
3

z
= [
-
25
.
7
,
16
.
3
]

d
= [
-
24
,
18
]

e
= [
-
19
.
7
,
22
.
3
]

Fig. 3. An example circuit performing z = ab+c−b. The range of a signal
is shown in the square brackets.

V. RANGE ANALYSIS

The authors in [9] propose a single affine expression to
capture both range and precision. However, we believe range
and precision expressions should be kept separately. Precision
is a function of range for operations such as multiplication and
division, and hence, the number of error terms εi can easily
explode. After range analysis, we obtain numerical values for
the ranges, hence the affine expressions for precisions remain
manageable.

We use affine arithmetic for the range analysis to minimize
the integer bit-widths required for each signal. For instance,
let us consider the evaluation of z = ab+ c− b as illustrated
in Fig. 3. First, we assume the users know the exact range of
all the input signals. Since we want to obtain the range for
each signal, we set d = ab, e = d+ c and y = e− b. In affine
form we get

â = −0.5 + 2.5ε1 b̂ = 6 + 2ε2

ĉ = 4.3 d̂ = −3 + 15ε1 − 1ε2 + 5ε3

ê = 1.3 + 15ε1 − 1ε2 + 5ε3 ẑ = −4.7 + 15ε1 − 7ε2 + 5ε3

Hence, the ranges of the signals are d = [−24, 18],
e = [−19.7, 22.3] and z = [−25.7, 16.3]. We perform range
analysis on all signals for a given design and find the range for
each signal. The integer bit-width (IB) required for a signal x
is computed with

IBx = dlog2(max(|xmin|, |xmax|))e+ α (1)

where α =

{
1, mod(log2(xmax), 1) 6= 0
2, mod(log2(xmax), 1) = 0.

However, AA does not always lead to a better range
estimation than IA. For instance, applying IA to the example,
we obtain d = [−24, 16], which is narrower than the AA
result. This is mainly due to the suboptimal fitting of an affine
expression which is not due to the affine approach itself.

VI. PRECISION ANALYSIS

We use affine arithmetic for precision analysis in a similar
fashion as for range analysis. There are two main ways to
quantize a signal: truncation and round-to-nearest. Truncation

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

and round-to-nearest can cause a maximum error of 2−FB (1
ulp) and 2−FB−1 (0.5 ulp), respectively. Truncation chops bits
off the least significant bits and requires no extra hardware
resources. Round-to-nearest involves a small adder followed
by truncation. For simplicity, we shall perform round-to-
nearest throughout this work. Hence, the quantized version
x̃ of a signal x is given in affine form by

x̃ = x+ 2−FBx̃−1ε where ε = [−1, 1]

where FBx̃ is the fraction bit-width of x̃. Hence, the error at
x̃ due to finite precision effects is given by

Ex̃ = 2−FBx̃−1ε

For addition/subtraction, the affine error expression is given
by

z̃ = x̃± ỹ = x± y + Ex̃ ± Eỹ + 2−FBz̃−1ε3

⇒ Ez̃ = Ex̃ + Eỹ + 2−FBz̃−1ε3

For multiplication:

z̃ = x̃ỹ
= xy + xEỹ + yEx̃ + Ex̃Eỹ + 2−FBz̃−1ε3

⇒ Ez̃ = xEỹ + yEx̃ + Ex̃Eỹ + 2−FBz̃−1ε3

Assuming that the input signals need to be rounded, the
application of the error models to the circuit in Fig. 3 is shown
below.

Eã = 2−FBã−1ε1

Eb̃ = 2−FBb̃−1ε2

Ec̃ = 2−FBc̃−1ε3

Ed̃ = aEb̃ + bEã + EãEb̃ + 2−FBd̃−1ε4

Eẽ = Ed̃ + Ec̃ + 2−FBẽ−1ε6

Ez̃ = Eẽ − Eb̃ + 2−FBz̃−1ε7

Note that Ed̃ would be at its maximum when the signals a
and b are at their absolute maximum, i.e. a = 3 and b = 8.

Substituting the equations we get the following maximum
error at the output z̃.

max(Ez̃) = 2−FBb̃ + 2−FBã+2 + 2−FBã−FBb̃−2

+2−FBd̃−1 + 2−FBc̃−1

+2−FBẽ−1 + 2−FBz̃−1

For faithful rounding, the output error Ez̃ needs to be less than
or equal to 1 ulp, i.e.

2−FBz̃ ≥ max(Ez̃)

⇒ 2−FBz̃−1 ≥ 2−FBb̃ + 2−FBã+2 + 2−FBã−FBb̃−2

+2−FBd̃−1 + 2−FBc̃−1 + 2−FBẽ−1 (2)

From Eqn. (2), we see that the aim is to find minimal
FB for each signal that satisfy the inequality and results in
minimal circuit area. Since each FB is an integral value, the
constraint space of this optimization problem is non-convex.
As a result, we choose the adaptive simulated annealing
(ASA) package available from [22]. Traditional simulated

TABLE I
THE INTEGER BIT-WIDTHS (IBS), THE UNIFORM FRACTION BIT-WIDTHS

(UFBS) AND THE MULTIPLE FRACTION BIT-WIDTHS (MFBS) TO THE

EXAMPLE CIRCUIT IN FIG. 3.

Signal ã b̃ c̃ d̃ ẽ z̃

IB 2 3 3 5 5 5

UFB 12 12 12 12 12 8

MFB 12 11 12 12 12 8

annealing is very effective in discovering the global optimum,
but its problem has been the slow convergence. ASA has been
developed to statistically find the test global fit of a nonlinear
constrained non-convex cost function over a D-dimensional
space. It permits adaptation to changing sensitivities in the
multi-dimensional parameter space, thus allowing significantly
faster convergence times.

In ASA, the user supplies a constraint function and a
cost function. Error functions such as the inequality above
are supplied as the constraint function. Since our aim is to
minimize circuit area in this work, we supply an area model
of the circuit as a function of the signal bit-widths as the cost
function. In this area model, a full adder is assumed to be
the unit area, i.e. the area for the addition x + y is modeled
with max(IBx + FBx, IBy + FBy) and the area for the
multiplication xy is modeled with (IBx+FBx)(IBy+FBy).
These area models are derived to correspond with the operator
area usage of our hardware compilation system (ASC) [19].
Other area models can be used to target different hardware
compilers and device technologies.

The annealing process can be accelerated significantly by
supplying good initial variable values (FBs in our case).
Optimum uniform FBs are analytically computed and used
as the initial variable values. For Eqn. (2), substituting the
fraction bit-widths in the computation chain with a uniform
fraction bit-width UFB,

2−FBz̃−1 ≥ 2−UFB + 2−UFB+2 + 2−2UFB−2 + 3(2−UFB−1)

Let FBz̃ = 8 bits. Solving the equation for the mini-
mum value of UFB which satisfies the inequality gives us
UFB = 12 bits, an analytical solution of the uniform bit-
width selection problem.

The integer bit-widths (IBs), the uniform fraction bit-width
(UFBs) and the multiple fraction bit-widths (MFBs) to the
example circuit are summarized in Table I. The IBs are
obtained by using the signal ranges found in Section V and
Eqn. (2), and the MFBs are computed by ASA. We observe
that ASA is able to reduce the multiplication operand b by
one bit. The area cost of using UFBs and MFBs is found to
be 244 and 230 units, respectively. By using MFBs, we have
achieved an area saving of 6%.

When using UFBs we get a gap of 3.66 × 10−4 between
the actual error and the requested error, since the degree of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

C
o
m
p
u
t
a
t
i
o
n
a
l

R
e
s
o
u
r
c
e

1

0
T
a
s
k

A

T
a
s
k

B

S
e
l
e
c
t

x
 y

Fig. 4. A resource sharing scenario: Task A and Task B time-share a
computational resource.

freedom is one dimensional. However with MFBs, we have a
multi dimensional degree of freedom, resulting in smaller error
gap of 1.22 × 10−4 and area cost. The differences between
UFBs and MFBs are rather small for this example circuit,
since the error gap is already rather small when using UFBs.
We see more dramatic differences between UFBs and MFBs
for designs with larger error gaps, as it will be demonstrated
with the case studies in Section IX.

VII. OPTIMIZATION UNDER RESOURCE SHARING

We often encounter a scenario such as the one depicted
in Fig. 4 where we want to share a single resource for two
(or more) tasks in a time-multiplexed manner. The range and
precision analysis presented in the previous two sections can
be trivially extended to cover these cases: signals that are
shared among multiple tasks should be large enough to cover
all tasks.

For the scenario in Fig. 4, we run range and precision
analysis twice. In the first cycle, we assume that the select
signal is set to zero, i.e. Task A is in execution. In the second
cycle, we assume that the select signal is set to one. After the
two bit-width analysis cycles, we obtain two sets of bit-widths,
each corresponding to a task data path. For all signals that are
shared (x, y and all signals within the shared computational
resource), we take the maximum of each signal’s tuple of bit-
widths. For instance, if the signal x has the following set
IBx = {2, 4} and FBx = {12, 9}, we set IBx = 4 and
FBx = 12. This scheme allows all signals to have sufficient
bit-widths for every task.

VIII. CASE STUDIES

For the five case studies below, we assume that the inputs
use the same fraction bit-widths as the outputs. For the cases
when multiple outputs are present, we use the same output
precision for all outputs

For these cases studies, we develop a fully automated design
flow which starts with designs captured in ASC [19] C++
syntax. All stages within MiniBit (Fig. 2) are written in C++
and integrated within the ASC system. The MiniBit input pass
parses the input design description into an internal dataflow
graph (DFG) representation for the range analysis pass. The
error function generation pass produces an error model and
the cost function generation pass produces an area cost model.
The results from range analysis, together with the generated
error function and cost function, are used to derive the UFB.
Next, using ASA, we compute the MFBs. The MiniBit output

pass converts the bit-width optimized DFG representations
back into ASC design description. The verification output
generation step produces a variable bit-width assigned design
for simulation to verify the optimized results.

A. Polynomial Approximation

We examine the degree four polynomial for the approxi-
mation to y = log(1 + x) where x = [0, 1). Horner’s rule
evaluates the polynomial:

y = ((cdx+ cd−1)x+ . . .)x+ c0

where c0 . . . cd are the polynomial coefficients. The coef-
ficients are obtained in a minimax sense to minimize the
maximum absolute error.

B. RGB to YCbCr

We consider the RGB to YCbCr color space converter
specified by the JPEG 2000 standard [24]. The input signals
R, G and B are assumed to be 8-bit unsigned integers. Shifts
are used for the multiplications by 0.5.



Y
Cb
Cr


 =




0.299 0.587 0.114
−0.16875 −0.33126 0.5

0.5 −0.41869 −0.08131





R
G
B




C. Matrix Multiplication

The 2 × 2 matrix multiplication using Strassen’s algo-
rithm [25] is considered, which is commonly used as a
basic processing element for large matrix multiplications. We
assume the elements of the input matrices are over [0,1).

[
y00 y01

y10 y11

]
=

[
a00 a01

a10 a11

] [
b00 b01

b10 b11

]

The four quadrants of the result matrix can be calculated as
follows:

y00 = p0 + p3 − p4 + p6

y01 = p2 + p4

y10 = p1 + p3

y11 = p0 + p2 − p1 + p5

p0 = (a00 + a11)(b00 + b11)
p1 = (a10 + a11)b00

p2 = a00(b01 − b11)
p3 = a11(b10 − b00)
p4 = (a00 + a01)b11

p5 = (a10 − a00)(b00 + b01)
p6 = (a01 − a11)(b10 + b11)

D. B-Splines

We examine uniform cubic B-splines, commonly used for
image warping applications [26]. The B-spline basis functions,
B0, B1, B2 and B3, are defined by

B0(u) = (1−u)3

6

B1(u) = 3u3−6u2+4
6

B2(u) = −3u3+3u2+3u+1
6

B3(u) = −u3

6

where u = [0, 1). For the implementation of this design,
optimizations including shifts instead of multiplications, and
sharing common intermediate results are carried out.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

TABLE II
NUMBER OF ADDITIONS/SUBTRACTIONS, MULTIPLICATIONS AND

SIGNALS TO BE OPTIMIZED.

Case Study Add/Sub Mult Signals

Degree 4 Poly 4 4 12

RGB to YCbCr 6 7 19

2× 2 Matrix Mult 18 7 21

B-Splines 15 6 22

8× 8 DCT 32 32 55

E. Discrete Cosine Transform (DCT)

We consider the 8 × 8 discrete cosine transform (DCT)
implemented according to [27]. A vector of input data x0...7

can be transformed to DCT coefficients y0...7 by



y0

y2

y4

y6


 =




c0 c0 c0 c0
c2 c5 −c5 c2
c0 −c0 −c0 c0
c5 −c2 c2 −c5







x0 + x7

x1 + x6

x2 + x5

x3 + x4







y1

y3

y5

y7


 =




c1 c3 c4 c6
c3 −c6 −c1 −c4
c4 −c1 c6 c0
c6 −c4 c3 −c1







x0 − x7

x1 − x6

x2 − x5

x3 − x4




where c0...7 are trigonometric constants. We use 8-bit unsigned
integers for the elements in the input vector x0...7.

IX. RESULTS

We implement the five case studies with ASC, A Stream
Compiler, for FPGAs [19]. ASC code makes use of C++
syntax and ASC semantics, which allow the user to program on
the architecture-level, the arithmetic-level and the gate-level.
Designs are synthesized with ASC and placed-and-routed with
Xilinx ISE 6.3 on a Xilinx Virtex-4 XC4VLX100-11 FPGA.
The device contains user-programmable elements known as
slices, dedicated multiply-and-add units and embedded RAMs.
In order to make fair comparisons, we implement designs
using slices only and combinatorially without any pipelin-
ing. Table II shows the number of additions, subtractions,
multiplications and signals to be optimized for the five case
studies. We observe that the degree four polynomial is the
least complex and the 8× 8 DCT has the most complexity.

A. Comparisons of Uniform Fraction Bit-Widths and Multiple
Fraction Bit-Widths

Table III shows the optimization times and error statistics of
multiple fraction bit-width designs, and comparisons between
uniform fraction bit-width (UFB) and multiple fraction bit-
width (MFB) designs. The UFB and MFB designs use the
same number of integer bits for all signals, as computed in
our range analysis phase. The optimization times have been
measured on an AMD Athlon XP 2600+ PC with 2GB DDR-
SDRAM, and include both range and precision analysis times.
Adaptive simulated annealing (ASA) is the dominant factor

Poly4 RGB Matrix B−Splines DCT
0

5

10

15

20

25

30
Area Savings of MFB over UFB

A
re

a
S

av
in

g
[%

]

Target Precision 4 bits
Target Precision 8 bits
Target Precision 12 bits
Target Precision 16 bits

Fig. 5. Percentage area saving of MFB over UFB at different target
precisions.

in the optimization process and we observe that more time is
needed for designs with more signals, which is expected. Note
that for all case studies, the optimizations times are a matter
of seconds.

The ulp errors and SNRs are computed by simulating
MFB optimized designs using random input vectors. IEEE 64-
bit double-precision floating-point is assumed to be the true
value for the error computations, since it is significantly more
accurate than the precisions we are targeting. The maximum
ulp error for all designs are well below 1 ulp indicating that
the results are indeed faithfully rounded. Also, the average
ulp error is less than 0.3 for all case studies. Looking at the
area and speed comparisons, although we optimize designs for
minimal area, the reduction in the multiplier and adder sizes
leads to reductions in latencies as a byproduct. We note that
designs using MFBs are always smaller and faster than designs
using UFBs. Some of the savings may seem rather small, but
we get these savings for free, as the MFB designs have the
same error bound as the UFB designs.

Fig. 5 shows the percentage area saving of MFB over UFB
for the five case studies at different target precisions. Gener-
ally, we obtain increased relative savings for lower precisions.
Another trend is that designs with deeper computation chains
can benefit more with MFBs: the depths can be deduced
by examining the latency (combinatorial delay) results in
Table III. An area saving of up to 26% is achieved in the
case of B-Splines, which has a deep computation chain.

Fig. 8 shows the area variation for B-splines with increasing
target precision. It can be seen that the area differences be-
tween UFB and MFB are increasing with the target precision.
Fig. 6 and Fig. 7 show the area and latency variations for
various polynomial degrees with target precision fixed at eight
bits. Since we use Horner’s rule to evaluate polynomials, one
extra degree causes one more adder and one more multiplier.
In order to make a fair comparison, the coefficients are set to
the number π throughout. We can see that as we increase the
depth of the computation chain (i.e. increase the polynomial
degree), the area and latency differences between UFB and
MFB increase.

Fig. 9 illustrates how the best adaptive simulated annealing

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

TABLE III
OPTIMIZATION TIMES AND ERROR STATISTICS OF MULTIPLE FRACTION BIT-WIDTH DESIGNS (MFB RESULTS), AND COMPARISONS BETWEEN UNIFORM

FRACTION BIT-WIDTH AND MULTIPLE FRACTION BIT-WIDTH DESIGNS (UFB/MFB COMPARISONS).

Case Study MFB Results UFB/MFB Comparisons

Application
Prec Opt Max Err Avg Err SNR Area [slices] Latency [ns]

[bits] Time [s] [ulp] [ulp] [dB] UFB MFB Diff Impr [%] UFB MFB Diff Impr [%]

Degree 4 8 1.9 0.694 0.253 51.5 803 723 80 9.96 114.00 105.39 8.61 7.55

Polynomial 16 2.0 0.731 0.256 99.5 1921 1797 124 6.45 168.55 151.81 16.74 9.93

RGB to YCbCr
8 8.9 0.662 0.260 97.2 1165 1132 33 2.83 37.47 36.95 0.52 1.39

16 9.7 0.793 0.272 144.9 1641 1602 39 2.38 50.26 48.83 1.43 2.85

2× 2 Matrix 8 16.1 0.520 0.251 54.4 1896 1799 97 5.12 44.20 42.73 1.47 3.33

Multiplication 16 19.5 0.528 0.247 102.5 4240 4072 168 3.96 59.22 56.14 3.08 5.20

B-Splines
8 27.7 0.716 0.267 49.8 1189 952 237 19.93 88.39 78.58 9.81 11.10

16 32.8 0.774 0.278 96.6 2652 2165 487 18.36 130.11 114.03 16.08 12.36

8× 8 DCT
8 154.3 0.702 0.254 103.1 5368 5217 151 2.81 54.83 50.73 4.10 7.48

16 179.1 0.708 0.257 151.3 7320 7167 153 2.09 66.39 59.42 6.97 10.50

2 3 4 5 6 7 8
400

600

800

1000

1200

1400

1600

1800

2000

Polynomial Degree

A
re

a
[s

lic
es

]

Target Precision 8 bits

Uniform Fraction Bit−Width (UFB)
Multiple Fraction Bit−Width (MFB)

Fig. 6. Area variation for various polynomial degrees with target precision
fixed at eight bits.

(ASA) area cost varies with the number of iterations for
B-splines with a target precision of eight bits. ASA first
starts with UFB, which results in a cost value of 1303 units.
We observe that by increasing the number of iterations, we
gradually approach a set of MFBs that give the lowest cost
value, which is 982 units in this case. The annealing time to
approach this optimum cost value is 23 seconds.

B. Comparisons of Different Range Analysis Methods

We examine the impact of using different range analysis
methods on design the area and latency. Comparisons to the
five case studies using simulation, affine arithmetic (AA) and
interval arithmetic (IA) for the range are shown in Table IV.
The simulation-based range analysis is performed by feeding
the designs with a large data set of random input samples
and observing the data range. Although the simulation method
gives smaller area and shorter latency, its drawback is that
it can only guarantee overflow/underflow protection for the
samples tested. It becomes quickly impractical for high input

2 3 4 5 6 7 8

100

150

200

250

Polynomial Degree

La
te

nc
y

[n
s]

Target Precision 8 bits

Uniform Fraction Bit−Width (UFB)
Multiple Fraction Bit−Width (MFB)

Fig. 7. Latency variation for various polynomial degrees with target precision
fixed at eight bits.

resolutions, since the run time increases exponentially with the
resolution.

We also observe that AA gives slightly better results than
IA. This is due to the fact that AA can exploit correlations
between signals as discussed in Section IV.

C. Comparisons with Integer Linear Programming

In order to determine the optimality of the ASA solution
used in MiniBit, we compare our results against the optimal
bit-widths allocated through integer linear programming (ILP),
which is known to give global optimum results. The ILP
formulations are solved by using the ILOG CPLEX [28]
solver. The optimization problem contains non-linear functions
that are converted into equivalent linear functions following
the approach in [29]. The obtained ILP results are used as
optimal solutions to judge the quality of the ASA results. The
ILP solutions presented here take several hours to several days
on an AMD Athlon XP 2600+ PC with 2GB DDR-SDRAM.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

TABLE IV
AREA AND LATENCY COMPARISONS USING DIFFERENT RANGE ANALYSIS METHODS FOR TARGET PRECISION OF EIGHT BITS.

Case Study
Area [slices] Latency [ns]

Simulation Affine Arithmetic Interval Arithmetic Simulation Affine Arithmetic Interval Arithmetic

Degree 4 Poly 701 723 732 103.21 105.39 107.37

RGB to YCbCr 1109 1132 1143 35.17 36.95 38.82

2× 2 Matrix Mult 1747 1799 1838 40.71 42.73 43.68

B-Splines 937 952 978 76.01 78.58 89.86

8× 8 DCT 5103 5217 5312 47.61 50.73 51.30

4 8 12 16 20 24 28 32

1000

2000

3000

4000

5000

6000

7000

Target Precision [bits]

A
re

a
[s

lic
es

]

B−Splines

Uniform Fraction Bit−Width (UFB)
Multiple Fraction Bit−Width (MFB)

Fig. 8. Area variation for B-splines with increasing target precision.

10
0

10
1

10
2

10
3

10
4

10
5

950

1000

1050

1100

1150

1200

1250

1300

1350

ASA Iterations

A
S

A
 A

re
a

C
os

t

B−Splines − Target Precision 8 bits

Fig. 9. Adaptive simulated annealing (ASA) area cost variation with ASA
iterations for B-splines.

First, we consider the comparison between ILP and ASA
for different design complexities. Fig. 10 presents the results
for optimizing degree two to degree twelve polynomials using
ILP, ASA and UFB solutions. Although the area savings of
ILP over ASA improves slightly with design complexity, they
are less than 1%. This indicates that with ASA, we can
produce results that are close to the global optimum even with
increasing design complexities.

Next, we study optimality of the ASA solution when the
design constraint is changed using the degree four polynomial
design. Fig. 11 shows the area cost for optimizing the design

2 3 4 5 6 7 8
400

600

800

1000

1200

1400

1600

1800

2000

Target Precision 8 bits

Polynomial Degree

A
re

a
[s

lic
es

]

Uniform Fraction Bit−Width (UFB)
Adaptive Simulated Annealing (ASA)
Integer Linear Programming (ILP)

Fig. 10. Area comparison for various polynomial degrees with target
precision fixed at eight bits.

4 8 12 16 20 24 28 32

1000

1500

2000

2500

3000

Target Precision [bits]

A
re

a
[s

lic
es

]

Degree 4 Polynomial

Uniform Fraction Bit−Width (UFB)
Adaptive Simulated Annealing (ASA)
Integer Linear Programming (ILP)

Fig. 11. Area variation for degree four polynomial with increasing target
precision.

with different target precision requirements. We see a similar
trend to Fig. 10 and again the differences are within 1%.

We conclude that although ILP provides global optimal
solutions, we can achieve near optimal solutions using ASA
with several orders of magnitude less run time.

X. CONCLUSIONS

We have presented MiniBit, an automated approach for op-
timizing bit-widths of fixed-point designs with static analysis,
for designing fixed-point hardware with guaranteed accuracy.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

We have described methods to minimize both integer and
fraction parts of fixed-point signals based on affine arith-
metic. For precision analysis, we employ a semi-analytical
approach, where analytical error models in conjunction with
adaptive simulated annealing (ASA) are used to find a local
optimum number of fraction bits. The analytical models allow
us to guarantee overflow/underflow protection and numerical
accuracy for all possible inputs over the user-specified input
intervals. We make the assumption that the maximum errors
can happen at all nodes at the same time, however in practice,
this will perhaps never be the case. This assumption will
often result in pessimistic bit-widths. However, given that our
approach can guarantee accuracy, we believe it is a small
tradeoff to make.

Although our approach has been primarily designed for
FPGA and ASIC applications, its principles could be applied
to other applications such as fixed-point digital signal proces-
sors (DSPs). For DSPs, one could apply our range analysis
to determine the integer bit-widths, and use our precisions
analysis to calculate the maximum error bounds at the output
of the computation chain. We can also apply MiniBit to con-
figurable processors with extensible instructions for embedded
applications such as Tensilica [30] by optimizing the bit-
widths of the custom instruction blocks.

Two limitations of our approach are: (1) the search space
for ASA can be vast for large designs, leading to slow
optimization times; (2) although this initial work does not
cover designs with feedback loop, we can extend the error
model by using the technique described in [9]. For future work,
we hope to use clustering techniques to optimize parts of a
large design independently, which will result in suboptimal
bit-widths but faster optimization time. Moreover, we hope to
extend MiniBit to cover floating-point arithmetic.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their re-
marks. The support of the Jet Propulsion Laboratory, Xilinx
Inc., the U.K. Engineering and Physical Sciences Research
Council (Grant number GR/N 66599, GR/R 55931 and GR/R
31409) and the Croucher Foundation is gratefully acknowl-
edged.

REFERENCES

[1] G. Constantinides and G. Woeginger, “The complexity of multiple
wordlength assignment,” Applied Mathematics Letters, vol. 15, no. 2,
pp. 137–140, 2001.

[2] A. Abdul Gaffar, O. Mencer, W. Luk, and P. Cheung, “Unifying bit-
width optimisation for fixed-point and floating-point designs,” in Proc.
IEEE Symp. Field-Programmable Custom Computing Machines, 2004,
pp. 79–88.

[3] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and I. Bolsens,
“A methodology and design environment for DSP ASIC fixed point
refinement,” in Proc. ACM/IEEE Design Automation and Test in Europe
Conf., 1999, pp. 271–276.

[4] K. Kum and W. Sung, “Combined word-length optimization and high-
level synthesis of digital signal processing systems,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, vol. 20,
no. 8, pp. 921–930, 2001.

[5] S. Kim and W. Sung, “Fixed-point error analysis and word length
optimization of 8×8 IDCT architectures,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 8, no. 8, pp. 935–940, 1998.

[6] C. Shi and R. Brodersen, “Automated fixed-point data-type optimiza-
tion tool for signal processing and communication systems,” in Proc.
ACM/IEEE Design Automation Conf., 2004, pp. 478–483.

[7] M. Willems, V. Bürgens, H. Keding, T. Grötker, and H. Meyr, “System
level fixed-point design based on an interpolative approach,” in Proc.
ACM/IEEE Design Automation Conf., 1997, pp. 293–298.

[8] G. Constantinides, P. Cheung, and W. Luk, “Wordlength optimization for
linear digital signal processing,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 22, no. 10, pp. 1432–1442, 2003.

[9] C. Fang, R. Rutenbar, and T. Chen, “Fast, accurate static analysis for
fixed-point finite-precision effects in DSP designs,” in Proc. ACM/IEEE
Int’l Conf. on Computer-Aided Design, 2003, pp. 275–282.

[10] C. Fang, R. Rutenbar, M. Püschel, and T. Chen, “Toward efficient
static analysis of finite-precision effects in DSP applications via affine
arithmetic modeling,” in Proc. ACM/IEEE Design Automation Conf.,
2003, pp. 496–501.

[11] D. Menard and O. Sentieys, “Automatic evaluation of the accuracy of
fixed-point algorithms,” in Proc. ACM/IEEE Design Automation and Test
in Europe Conf., 2002, pp. 1530–1591.

[12] S. Wadekar and A. Parker, “Accuracy sensitive. word-length selection
for algorithm optimization,” in Proc. IEEE Int’l. Conf. on Computer
Design, 1998, pp. 54–61.

[13] L. de Figueiredo and J. Stolfi, “Self-validated numerical methods and
applications,” in Brazilian Mathematics Colloquium monograph. IMPA,
Brazil, 1997.

[14] V. Lefevre, J. Muller, and A. Tisserand, “Toward correctly rounded
transcendentals,” IEEE Trans. Computers, vol. 47, no. 11, pp. 1235–
1243, 1998.

[15] M.J. Schulte and E.E. Swartzlander Jr., “Hardware designs for exactly
rounded elementary functions,” IEEE Trans. Computers, vol. 43, no. 8,
pp. 964–973, 1994.

[16] A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee, “Precision
and error analysis of Matlab applications during automated hardware
synthesis for FPGAs,” in Proceedings of the DATE 2001 on Design,
automation and test in Europe, 2001, pp. 722–728.

[17] M. Haldar, A. Nayak, N. Shenoy, A. Choudhary, and P. Banerjee, “FPGA
hardware synthesis from Matlab,” in Proc. Conf. VLSI Design,, 2001,
pp. 299–304.

[18] G. Constantinides, “Perturbation analysis for word-length optimization,”
in Proc. IEEE Symp. Field-Programmable Custom Computing Machines,
2003, pp. 81–90.

[19] O. Mencer, D. Pearce, L. Howes, and W. Luk, “Design space exploration
with A Stream Compiler,” in Proc. IEEE Int’l Conf. Field-Programmable
Technology, 2003, pp. 270–277.

[20] Xilinx System Generator User Guide v6.3, Xilinx Inc., 2004,
http://www.xilinx.com.

[21] L. Ingber, “Very fast simulated re-annealing,” Journal of Mathematical
Computer Modelling, vol. 12, no. 8, pp. 967–973, 1989.

[22] ——, Adaptive Simulated Annealing (ASA) 25.15, 2004,
http://www.ingber.com/#ASA.

[23] R. Moore, Interval Analysis. Prentice-Hall, 1966.
[24] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000

still image compression standard,” IEEE Signal Processing Magazine,
vol. 18, no. 5, pp. 36–58, 2001.

[25] V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathe-
matik, vol. 13, pp. 354–356, 1969.

[26] J. Jiang, W. Luk, and D. Rueckert, “FPGA-based computation of free-
form deformations in medical image registration,” in Proc. IEEE Int’l
Conf. Field-Programmable Technology, 2003, pp. 234–241.

[27] A. Madisetti and A.N. Willson Jr., “A 100 MHz 2-D 8× 8 DCT/IDCT
processor for HDTV applications,” IEEE Trans. Circuits and Systems
for Video Technology, vol. 5, no. 2, pp. 158–165, 1995.

[28] ILOG CPLEX 9.0, User’s Manual, ILOG SA.,
http://www.ilog.com/products/cplex, 2003.

[29] G. Constantinides, P. Cheung, and W. Luk, “Optimum Wordlength
Allocation,” in Proc. IEEE Symp. on Field Programmable Custom
Computing Machines, 2002, pp. 219 – 228.

[30] R. Gonzalez, “Xtensa: a configurable and extensible processor,” IEEE
Micro, vol. 20, no. 2, pp. 60–70, 2000.

http://www.xilinx.com
http://www.ingber.com/#ASA

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

Dong-U Lee (S’01-M’05) received the BEng degree
in information systems engineering and the PhD
degree in computing, both from Imperial College
London in 2001 and 2004, respectively. He is cur-
rently a postdoctoral researcher at the Electrical
Engineering Department, University of California,
Los Angeles (UCLA), where he is working on chan-
nel codes and symbol timing synchronization for
deep-space communications with the Jet Propulsion
Laboratory, NASA. His research interests include
computer arithmetic, communications, design au-

tomation, reconfigurable computing and video image processing. He is a
member of the IEEE.

Altaf Abdul Gaffar (S’03-M’05) received the BEng
degree in information systems engineering and the
PhD degree in computing, both from Imperial Col-
lege London in 2000 and 2005, respectively. He
is currently working as a research assistant at the
Electrical and Electronic Engineering Department
at Imperial College London. His research interests
include bit-width optimization for floating-point and
fixed-point arithmetic, and high-level power estima-
tion and optimization techniques. He is a member
of the IEEE.

Ray C.C. Cheung (S’01) received the BEng degree
and MPhil degree in Computer Engineering and
Computer Science and Engineering from The Chi-
nese University of Hong Kong (CUHK) in 1999 and
2001 respectively. In 2001, he worked as a system
administrator in the Center of Large-Scale Com-
putation (CLC) of Cluster Technology, HK. From
Jan 2002 to Dec 2003, he was an instructor of the
Department of Computer Science and Engineering,
CUHK. He is now a PhD candidate, in the Custom
Computing group, Department of Computing, Impe-

rial College London. His current research interests are computer arithmetic
hardware designs and design exploration of System-on-Chip (SoC) designs
and embedded systems. He is a student member of the IEEE and the ACM,
and is the newsletter and web editor of the SIGDA UK chapter.

Oskar Mencer received his PhD and MS in Elec-
trical Engineering from Stanford University in 2000
and 1997 respectively, and a BS degree in Computer
Engineering from the Technion/Israel in 1994. He
founded MAXELER Technologies in 2003 after
three years as member of Technical staff in the
Computing Sciences Research Center at Bell Labs.
He is a member of the academic staff in the De-
partment of Computing, Imperial College London
and with the Custom Computing group. His research
interests span computer architecture, computer arith-

metic, VLSI microarchitecture, VLSI CAD, and reconfigurable (custom)
computing. More specifically, he is interested in exploring application specific
representation of computation at the algorithm level, the architecture level, and
the arithmetic level. He is a member of the IEEE.

Wayne Luk (S’85-M’89) received the MA, MSc,
and DPhil degrees in engineering and computing
science from the University of Oxford, Oxford,
United Kingdom. He is Professor of Computer Engi-
neering in the Department of Computing, Imperial
College London and leads the Custom Computing
Group there. His research interests include theory
and practice of customizing hardware and software
for specific application domains, such as graphics
and image processing, multimedia, and communi-
cations. Much of his current work involves high-

level compilation techniques and tools for parallel computers and embedded
systems, particularly those containing reconfigurable devices such as field-
programmable gate arrays. He is a member of the IEEE.

George A. Constantinides (S’96-M’01) received
the MEng degree in information systems engineering
and the PhD degree in electrical and electronic engi-
neering from Imperial College, London, UK, in 1998
and 2001, respectively. Since 2002, he has been a
Lecturer in digital systems, Electrical and Electronic
Engineering Department, Imperial College. He is the
author of “Synthesis and Optimization of DSP Al-
gorithms” (Dordrecht, Germany: Kluwer, 2004). His
research interests include reconfigurable computing
and electronic design automation, with a particular

focus on digital signal processing algorithms. Dr. Constantinides was program
Co-Chair of the International Conference on Field-Programmable Logic and
Applications in 2003, and serves on the Program Committees of FPL, FPT,
ISCAS, ERSA, and ARC. He was the Founding Chair of the UK SIGDA
Chapter, serving as General Chair in 2001, and Technical Chair from 2002 to
2003 of the annual workshop. He is a member of the IEEE and the ACM.

	Introduction
	Background
	Existing Work
	Discussion

	Overview
	Affine Arithmetic
	Range Analysis
	Precision Analysis
	Optimization under Resource Sharing
	Case Studies
	Polynomial Approximation
	RGB to YCbCr
	Matrix Multiplication
	B-Splines
	Discrete Cosine Transform (DCT)

	Results
	Comparisons of Uniform Fraction Bit-Widths and Multiple Fraction Bit-Widths
	Comparisons of Different Range Analysis Methods
	Comparisons with Integer Linear Programming

	Conclusions
	References
	Biographies
	Dong-U Lee
	Altaf Abdul Gaffar
	Ray C.C. Cheung
	Oskar Mencer
	Wayne Luk
	George A. Constantinides

