IEEE TRANSACTIONS ON COMPUTERS 1

Optimizing Hardware Function Evaluation

Dong-U Lee,Member, |IEEE, Altaf Abdul Gaffar, Member, |EEE,
Oskar MencerMember, |IEEE, and Wayne LukMember, IEEE

Abstract— We present a methodology and an automated system Method 1 Method 2
for function evaluation unit generation. Our system select the ‘
best function evaluation hardware for a given function, acaracy
requirements, technology mapping and optimization metris,
such as area, throughput and latency. Function evaluationf(x)
typically consists of range reduction, and the actual evalation
on a small convenient interval such ag0,r/2) for sin(z). We
investigate the impact of hardware function evaluation wit range
reduction for a given range and precision ofz and f(z) on
area and speed. An automated bit-width optimization techrmjue
for minimizing the sizes of the operators in the data paths is 5
also proposed. We explore a vast design space for fixed-point X, X
sin(z), log(z) and \/z accurate to one unit in the last place using Bit-Width
MATLAB and ASC, A Stream Compiler for Field-Programmable
Gate Arrays (FPGAS). In this study, we implement over 2000 o) .
placed-and-routed FPGA designs, resulting in over 100 mitbn Flg._l. Somg approximation methods are better than otheesdiven metric
Application-Specific Integrated Circuit (ASIC) equivalent gates. 2t different bit-widths.

We provide optimal function evaluation results for range ard
precision combinations between 8 and 48 bits.

Method 3

Metric
(Area, Latency or Throughput)

Index Terms— Computer arithmetic, elementary function ap- For a given accuracy requirement it is possible to plot the
proximation, gate arrays, minimax approximation and algo- area, latency, and throughput tradeoff and thus identigy th
rithms, optimization. optimal function evaluation method. The optimality depend
on further requirements such as available area, requiteddpa
and throughput. For instance, consider Fig. 1. In order to
minimize the metric (e.g. area or latency), one should use

UNCTION evaluation can often be the performance boimethod 1 for bit-widths lower tham;, method 2 for bit-widths
tleneck of many important compute-bound applicationgetweenz; andz,, and method 3 for bit-widths greater than
Examples include elementary functions suchlas(xz) and g,
compound functions such ag/—log(z). Computing these Qur approach explores, for a given function, seven differen
functions quickly and accurately is a major goal in comput@fimensions in optimizing hardware function evaluatiomge,
arithmetic and hardware design in general. Software implgrecision, method, hardware optimization, area, latenuy a

mentations are often too slow for numerically intensive @hroughput. The main achievements of this paper are:
real-time applications. For instance, over 60% of the total
run time is spent on function evaluation operations in a . . ; :
. . . .) eration to select optimal function evaluation hardware
simulation of a jet engine reported by O’Grady and Wang [1]. . .
S . based on a parameterized library.

The performance of such applications depends on the design . : .

. : . o Framework for hardware function evaluation with range
of an efficient hardware function evaluator. Yet in order

to implement function evaluation efficiently, the hardware reduc.t|on.forsm_(x), log(z) and \/5'. .
. . :) . .~ o Algorithmic design space exploration using MATLAB to

designer is faced with a multitude of function evaluation Lide the hardware desian brocess in ASC
methods such as polynomial approximation, or table lookup %it-width optimization of Qt]hepo erators in thé data paths
combined with polynomial approximation [2]. The challenge ° USINg & binpar search techni Ee in MATLAB P
is to provide a programming tool or library, that delivers 9 y : 9 : :

. « Vast hardware design space exploration of over 2000
the optimal hardware function evaluation unit for a given

function, with the associated input/output range and pregj FPGA designs on area, latency and throughput using

I. INTRODUCTION

« Methodology for automated function evaluation unit gen-

) . ASC.
and optimization metric.
The rest of this paper is organized as follows. Section lecsv
Manuscript received ——— background material and related work. Section IIl provides

D. Lee is with the Electrical Engineering Department, Ursty of g overview of our approach. Section IV describes range

California, Los Angeles, USA (e-mail: dongu@icsl.uclaigd
A. Abdul Gaffar is with the Department of Electrical and Elec reduction and its application to the three functions preesin

tronic Engineering, Imperial College, London, United Kimgn (e-mail: in this paper. Section V examines the degrees of freedom in
altaf.gaffar@imperial.ac.uk). , hardware function evaluation. Section VI describes how we

O. Mencer and W. Luk are with the Department of Comput- | h | ithmic side of the desi d
ing, Imperial College, London, United Kingdom (e-maifo.mencer, explore the algorithmic side of the design space and automat

w.luk}@imperial.ac.uk). the generation of hardware designs. Section VII explainvg ho

IEEE TRANSACTIONS ON COMPUTERS 2

the bit-widths of the operators in the data paths are opéthiz
Section VIII presents our framework for hardware design a .
space exploration. Section IX discusses results, andd®exti 2 nout y
offers conclusions and thoughts on future work. d
q
€— flip-flop
Il. BACKGROUND clock
: . i
There are numerous methods to approximate a function °'°Z';::‘::; T
over a given interval, and the optimal method depends on the

precisions of the inputs and outputs as studied in [3]. Yet, w

are not aware of any other work that attempts to guide th®- 2. Simplified view of a Xilinx logic cell. A single slicesiequivalent to
. . . : ; 2.25 logic cells.

designer as to which method is optimal for a particular casé. ogic cets

Direct table lookups are impractical for precisions higtiem

a few _bits, since ta_ble size inc_rgases exponentially with Fh Library Construction Library Usage

input size. Symmetric table addition methods [4] are fashwi - - - - __ ____ _______ __

moderate table sizes for precisions lower than 20 bits, b functon® rangefprecision method

|
are perhaps inappropriate for larger precisions due taitgel : / :
table sizes. Function evaluations using CORDIC [5] proside ! ! Function
.. . . . | Evaluate f(x) | :
popular research topic, involving only shift and add oderst. | (MATLAB) EVL?'burztr')?n

However, CORDICs have an execution time which is linearly
proportional to the number of bits in the operands, and is th

(ASC Lib)

suitable for applications high accuracy and speed. Of epurs Library Fordware Comler
the tradeoffs depend on the optimization metric as well. | it w0
Function evaluation typically consists of range reduction - - - - — — — —— - — — _ | \b

and the actual function approximation over a small interval (Algorithmic Design Space)
Range reduction [2] is crucial, since function approximati
is rather limited without it, and numerous applications dav
a large dynamic range. However, there has been a lack of
attention on hardware implementation of function appraim
tion with range reduction for different ranges, precisiamsl Fi9: 3. Design flow: MATLAB generates all the ASC code for titerdry.
. . . The user simply indexes into the library with range and ieai values to
approximation methods. To the best of our knowledge, this dtain the specific function evaluation unit.
the first work that deals with this important issue. We show
that input and output ranges form another consideratiomwhe
choosing the optimal method. Our approach is demonstrafe@ving more logic cells, and therefore a slice is counted as
with polynomial-only and table+polynomial methods with &eing equivalent of 2.25 logic cells. Recent-generatiaone
varying number of polynomial coefficients. figurable hardware has a large amount of slices. For instance
Peymandoust and De Micheli [6] use symbolic computée Xilinx Virtex-4 XC4VLX200-11 FPGA [8], which we use
algebra to optimize arithmetic data paths. Symbolic manif obtain our results, has 89088 slices (200448 logic gells)
ulations such as tree-height-reduction, factorizatiorpa@- eduivalent to over six million ASIC gates.
sions, and Horner transformation are incorporated to predu
minimal area or minimal delay data flow designs. The main lll. OVERVIEW
difference between their work and ours is that we considerFig. 3 shows the design flow of our automated hardware
function evaluation units with range reduction rather thest function evaluation approach. The function of interess, it
arithmetic data paths. In addition, we explore the tradeoff range and precision, and evaluation method are suppliedrto o
using memory and polynomials instead of just polynomialMATLAB program, which automatically designs the function
However, their work is in some sense orthogonal to ours é@pproximator and produces its hardware description. In our
that an optimal system would combine the results of the twaase, MATLAB produces code for ASC, A Stream Compiler
works. for FPGAs [9]. This large collection of ASC functions is
We choose hardware designs based on FPGAs to demthren transformed by a Perl script into an ASC function
strate our approach, due to their flexibility and speed. Tlealuation library (ASC lib). ASC then takes care of design
fundamental building block of Xilinx FPGAs is the logicspace exploration on the architecture level, the aritroetiel,
cell [7]. A logic cell comprises a 4-input lookup table, whic and the gate level of abstraction. The result is an optimized
can also act as a6 x 1 RAM or a 16-bit shift register, a function evaluation library for computing with FPGAs. De®i
multiplexer and a register. A simplified view of a logic cel i independent results at the algorithmic level can be obthine
depicted in Fig. 2. Two logic cells are paired together in amith MATLAB, and device specific results on FPGAs can be
element called a slice. A slice contains additional resesircobtained with ASC as they will be discussed in Section IX.
such as multiplexors and carry logic to increase the effayien Sign-magnitude fixed-point representation is used threugh
of the architecture. These extra resources are equivatentptit this paper, since it allows easier manipulation of nurmbe

|
| FPGA
| implementations

(Hardware Design Space)

IEEE TRANSACTIONS ON COMPUTERS 3

TABLE |
RANGE REDUCTION PROPERTIES OF THE THREE FUNCTIONS

——— range ——————>¢——— precision ———>

‘ sign ‘ integer fraction
Function | Range Reduction| Range Reduced Interval | Maximum
Fig. 4. The sign-magnitude fixed-point representation usetis work. Type Interval Size Derivative
sin(x) Additive [0,7/2) w/2 1
log(z) Multiplicative [0.5,1) 0.5 1.8
VT Multiplicative [0.25,1) 0.75 4

compared to two's complement. We define the sign bit and
the integer bits to be the range, and the fractional bits to be
the precision (Fig. 4). Ranges of 4, 8, 12, 16, 20 and 24 bits,
and the same set of bits for precisions are explored. These IV. RANGE REDUCTION

range/precision sets result in 36 different fixed-pointrfats. Consider an elementary functigf(z), wherez and f(z)

Given a functionf(z) and an intervala, b] we approximate have a given rangéa,b] and precision requirement. The
the function with polynomials and tables. Tasks in desigran evaluationf (z) typically consists of three steps [2]:
function evaluation library include automating the setacof (1) range reduction, reducing over the intervala, b] to a
range reduction, the selection and design of the functiah evmore convenient over a smaller intervala’, '],
uation method, and area, latency and throughput optineaati (2) function approximation on the reduced interval, and

on the lower levels of abstraction. The central contributd (3) ange reconstruction: expansion of the result backéo th
this paper lies in reconsidering the above structure for'us%riginal result range.

defi_ned fixed-point bit-widths. Whe_n implementing hardware thare are two main types of range reduction:

designs, one can select any bit-width for the range and the .) ,

precision of the fixed-point number. As a consequence, a* add'f“v? re_ductlony IS eqL_JaI toz — mC,

function evaluation library obtains the range and preaisio * Multiplicative reductiony is equal toz/C™

of the input and can use this information to produce awhere integern and a constar@' are defined by the evaluated
optimized function evaluation unit. Previous work [3] steowfunction.

the subproblem of how to select function evaluation methodsWe use ASC code notation in Fig. 5 to show various
based on precision. Based on input range and precision, methods of function evaluation including range reduction
now have the following degrees of freedom: and range reconstruction, which follow the ideas presented
in [11] and [12]. The notations.range and x.prec refer

to the number of bits used for the range and precision of
x, respectively. The code in Fig. 5 shows us an example a
different function evaluation methods for each function. |

1) applicability of range reduction
2) evaluation method selection
3) evaluation method design

« find minimal bit-widths reality, we create many combinations of evaluation methods
« find minimal polynomial degree and functions.
(for polynomial-only method) Table | summarizes the range reduction properties of
« find minimal segments the three functions. Equally sized segments for the ta-
(for table+polynomial method) ble+polynomial method are employed, meaning that the ap-

proximation interval needs to be a power of two. Hence,
for sin(x) we approximate ovelf0,2), for \/z, we split the
The polynomial-only |fo) approach approximates the interinterval into two sub-intervalsf0.25,0.5) and [0.5,1). The
val with a single polynomial, whereas the table+polynomighble shows range reduced approximation interval sizes of
(tp) approach performs piecewise polynomial approximatiahe three functions. The larger the approximation intertred
with equally sized segments. The ASC function evaluatianore hardware resources are potentially required. The first
library takes the range, precision and optimization metriorder absolute maximum derivatives give us an indication of
and instantiates one of many instances of the correspondihg non-linearities: more resources are required to appee
function evaluation unit. non-linear functions with large derivatives.

In this paper, the outputs of our function evaluation unites a Fig. 6 highlights the functions over the range reduced
accurate to one unit in the last place (ulp). Assume we requintervals. We observe that the functions have a relatively
a hardware unit to computén(z), wherez is a fixed-point linear behavior over these intervals, making them feadible
number with four range bits and eight precision bits. Then ttpproximate usingo or tp with equally sized segments.
range of the input i§—8,8) and the expected range of the
output is[—1,1]. The same precision is used at the output as
at the input. Hence for this example, since the precision is
eight bits, the maximum absolute error of the output needs toThis section describes the degrees of freedom a designer
be2~8 or less to guarantee faithful rounding. The term faithfiis faced with, when implementing function evaluation in
rounding is first introduced in [10], meaning that the resulhardware. The applicability of range reduction, approxiora
are rounded to the nearest or next nearest, thus accurate tornethod selection and its design, and hardware optimization
ulp. are discussed.

4) optimize: area, latency or throughput

V. DEGREES OFFREEDOM

IEEE TRANSACTIONS ON COMPUTERS 4

i

Evaluatingf(z) = sin(x)

sin(x)

/I Range Reduction
x1 = abs(x) % (2 =*pi); 0
x2 = IF(x1>pi, x1-pi, x1);

y = IF(x2>(pi/2), pi-x2, x2);

/I Approximation X
/I g(y) where y = [0,pi/2)
/I e.g. polynomial-only (po)
g = (a*y+h) *y+c 0

/I Range Reconstruction
f = IF(x1>pi, g, -9);

Evaluatingf(z) = log(z) 05 0o o5 1 15 2

/I Range Reduction
exp = leading_one_detect(x)-x.prec;
y = X >> exp; 1

VX

/I Approximation
/I g(y) where y = [0.5,1) 05
/I e.g. table+degree-1-polynomial (tpl)
g = tablelly] =*y+table2[y];

-0.5 0 05 1 15 2
/I Range Reconstruction X
f = g+exp *log(2);

Fig. 6. Plots of the three functions over = [—0.5,2]. Range reduced
intervals for each function are shown in thick lines.

Evaluatingf(z) = &

/I Range Reduction

exp = leading_one_detect(x)-x.prec;
X1 = X >> exp; -0.2r
y = IF(exp[0], x1 >> 1, x1);

/I Approximation

/I g(y) where y = [0.25,1)
Il e.g. table+degree-2-polynomial (tp2) -0.5¢
g = (tablely] *y+table2[y]) *y+table3[y];

/l'Range Reconstruction 0.5 0.5625 0.625 0.6875 0.75 0.8125 0.875 0.9375 1
expl = IF(exp[0], exp+l >> 1, exp >> 1); . -

f = g << expl; ’

Fig. 7. Segmentation for evaluatiigg(y) with eight uniform segments.

Fig. 5. Description of range reduction, approximation roettand range The leftmost (MSB) three bits of the inputs are used as theneagindex.

reconstruction for the three functioss(x), log(x) and v/z.

of the form

A. Applicability of Range Reduction 0@ = cayt+cayl 4. 4y + oo (1)
Given a particular function that we want to evaluate, we can

decide whether it is necessary to implement range reduction/Ve use Horner's rule [2] to reduce the number of multiplica-

not. In order to make the correct decision we need to considéis:

the optimization metric (area, latency or throughput) igles

function evaluation unit with and without range reductiang 9y) = ((cay+ca-1)y+...)Jy+co @)

select the optimal one. A preliminary study of the applitiabi

: : wherey is the input,d is the polynomial degree and are
of range reduction has been conducted in [13].

the coefficients. For the table+polynomiap) approach, the
input interval is split into2* equally sized segments. The
leftmost bits of the argumenj serve as the index into the
table, which holds the coefficients for that particular mgs.

There are many possible function evaluation methodsor the polynomial-only approach, there is just one entry in
such as symmetric table addition methods, CORDIC, ratithe table holding the coefficients, hence no index bits are
nal approximation [14], polynomial-only methods and taneeded. Segmentation for evaluating(y) with eight uniform
ble+polynomial methods. In this paper, we explore six metilegments ¥ = 3) is illustrated in Figure 7. We observe that
ods: polynomial-onlygo) and table+polynomial methods withthe range reduced interval is relatively linear, and hehee t
polynomials of degree two to sixp2-6). The polynomials are use of uniform segmentation is sufficient.

B. Approximation Method Selection

IEEE TRANSACTIONS ON COMPUTERS 5

l y l /I for a given function f, polynomial degree d
J}/j /I method m, input format i=[x.range,x.prec]
l Va l Vo l if (m=="po’) // for polynomial-only (po)
- /I find minimal polynomial degree
k & min_degree = find_min_degree(f,i);

/I optimize bit-widths

bw = optimize_bw(f,i,min_degree);
index cg Caa c Co /I generate polynomial coefficients
coeffs = gen_coeffs(f,i,min_degree,bw);
/I generate ASC code

1 gen_ASC(f,i,min_degree,bw,coeffs);

elseif (m=="tp’) // for table+polynomial (tp)
/I find minimal number of segments
min_segs = find_min_segs(f,i,d);
/I optimize bit-widths

W W1 Wi Wo bw = optimize_bw(f,i,d,min_segs);

< n /I generate coefficient lookup table
table = gen_table(f,i,d,min_segs,bw);
/I generate ASC code

ﬂ% gen_ASC(f,i,d,min_segs,bw,table);

end
+
< +> Fig. 9. Structure of our MATLAB tool for algorithmic designpace
exploration and ASC code generation.
n
a(y) and throughput optimizations on the arithmetic and gatel4e

can be left for the hardware compiler (ASC) to deal with.

Fig. 8. Architecture of our table+polynomiatp] approximation unit for Section VIII describes how this is achieved.
degreed polynomials.w; is the bit-width of the polynomial coefficient;,
where: =0,...,d.

VI. ALGORITHMIC DESIGN SPACE EXPLORATION
We use MATLAB to generate a large number of imple-
The architecture for an approximation unit witltpgscheme mentations for function evaluation. Several function eval
is depicted in Fig. 8. Thp methods trade off table area versugation methods are considered: polynomial-onpp)(and
polynomial area. A multiply-and-add based tree structam ctable+polynomial of degree two to sixp@-tp6). For a given
be observed, which follows Horner’s rule. The polynomigunction and any range/precision pair, our MATLAB tool gen-
coefficients are found in a minimax sense that minimize thgates ASC code which includes the circuit descriptiony{ol
maximum absolute error [2]. With this architecture, we neagbmial coefficients and optimized bit-widths. In this fashj
d + 1 table lookupsd multiplications andd additions. The we also obtain minimal bit-widths and the minimal number of

size of the lookup table is given by polynomial terms for thepo method. For theép methods, we
d find the minimal table-size and the coefficient bit-widths fo
table size= 2% x Zwi bits. (3) the given range and precision. Fig. 9 shows the structure of
= our MATLAB tool for algorithmic design space exploration

and producing ASC codes for hardware implementations.
Thefind_min_degree function for thepo method finds
C. Evaluation Method Design the minimal polynomial degree required to meet the output

Once we know which method to use, we need to desi?’rﬁror specification. It starts with a degree one polynomia a
the optimized unit. For the polynomial-onlpd) method, we inds the minimax polynomial coefficients. For all coeffidign
find the minimal degree of the polynomial that will satisfyconstants, and outputs of operators, which we shall refer
the required output precision. For the table+polynomig) (@S “variables”, double precision floating-point is used and
methods, we find the minimal number of segmeftsequired the approximation performed. The rgsult is compared to the
that satisfy output precision requirement. We further need MATLAB computed value of the function to calculate the ap-
determine the optimized bit-widths of the computationdesi Proximation error. The polynomial degree is incrementet un
the function evaluation units for all the methods. The hetigs the desired accuracy is met. Thied_min_seg function
used forpo andtp methods have linear complexities whereainds the minimal number of segmerit$ needed for a given
the bit-width optimization process has logarithmic commjije polynomial degree. It starts with = 0, which is equivalent to

with respect to the desired precision. These are discussed?®. and finds the minimax polynomial coefficients. Again, the
Section VI and Section VILI. approximation of this structure is compared with the MATLAB

function evaluationk is incremented until the maximum error
o over all segments is lower than the requested error. The
D. Optimize: Area, Latency or Throughput optimize_bw function performs bit-width optimization on
While the options or selections of the previous degrees thfe variables in the data paths. This procedure is discuased
freedom are pre-computed with MATLAB, the area, latenagetail in Section VII. Thegen_coeffs and gen_table

IEEE TRANSACTIONS ON COMPUTERS 6

functions generate the bit-width optimized polynomialfiee Let theith variable bev; and its maximum absolute value
cients or coefficient table. Finallygen_ASC generates the be v; ,,4,. By “variable”, we refer to coefficients, constants,
ASC code with the circuit description and optimized bitand outputs of operators in the design. The range bits redjuir

widths. for each variabley; can then be computed with
Since the IEEE double precision floating-point format used _ Mog, (s N +1 if |o 1> 1
in MATLAB is significantly more accurate than the fixedfange b|ts_{ AT if |Uz.’mm| <1 @

point representations we use in this work, we regard double)
precision as the exact value. In order to verify the corressn Given that the number of test samples is large enough, the
of the designs at the algorithmic level, we emulate the fonct Probabilities of overflows and underflows can be kept arbi-
evaluation steps described in Fig. 5 within MATLAB. Théraily low. o L _
emulator is ensured to be a bit-exact version of the actualPrecision analysis involves minimizing the fractional tear
hardware model, and is used to debug ASC designs. Firfethe variables, while respecting the output error crateri
precision effects for fixed-point can be effectively sintath Precision analysis is significantly more challenging areteh
within MATLAB by rounding after each arithmetic operationiS @ wealth of literature devoted to this topic (e.g. [15B])1
For each coefficient and arithmetic operator, we store f&owever, much of the previous work is focused on digital
fractional bit-width for rounding. signal processing applications, in which the error analysi
The outputs of the emulator are tested rigorously with giteria (such as signal to noise ratio) are rather diffefem
large set of random inputs to confirm that all results areedde®Ur Needs. In addition, the techniques are rather diffiault t
faithfully rounded. For each chunk of ASC code, our todMPlémentand slow, making them less amendable to optimize
also generates a report file containing the polynomial degr@l 648 designs. Hence, we opt for an approach where we keep
d used, number of segments fipr fractional bit-widths of the the factional bit-widths constant. _
operators, table size, maximum ulp error and the percentag&®t / be the number of variables in the system and the
of exactly rounded [11] (accurate to 0.5 ulp) results. 36dixe fractional bit-width of theith variable bé,,,, and the factional
point formats, three functions and six methods are examinddf Widths of the approximatiop and the evaluatiorf be b,
Hence, we explore 648 ASC code segments, generated by Bl 07, respectively (see F'g'b5)- Rounding a variable causes
MATLAB tool. The ASC code generation together with theét maximum of 0.5 ulp e”?fc »i~*) and truncation causes a
bit-width optimization process described in Section Valkgs Maximum of 1 ulp error{~"+). Although a rounding circuit

approximately ten hours on a dual Intel Xeon 2.6GHz PC wifffduires & small adder, we opt for rounding, since it allows
AGB DDR-SDRAM. smaller variables than truncation. In order to guarantitieftd

rounding, the erroe; at the outputf must be

—-b
VIl. BIT-WIDTH OPTIMIZATION AND ERRORANALYSIS €f <277 (5)

It is desirable to minimize the bit-widths for all variablesthe errore; is composed of the following three error terms:
in the data paths, leading to size reductions in tables, anc €4, for approximatingg with polynomials;
operators such as adders and multipliers. We employ a bite €., for rounding each variable,,, = F'(by,, ..., by, _,);
width minimization scheme which minimizes bit-widths whil « €y, for rounding the final resulf to b, fractional bits.
ensuring that the results meet the the one ulp error bounde errore,,. is effectively the error propagated from the
requirement. We split the problem of minimizing fixed-pointvariables in the data paths to the final result. Thus for faith
bit-widths into two parts: range analysis followed by psé@n rounding, one needs to ensure that
arﬁll_)ﬁl; :‘he two parts are performed ent_|r_ely W|th|_n_ our €ap+ €un + €51 < 9-bs ©6)
ramework, making use of the finite precision
hardware emulation models discussed in the previous sectiRounding f can cause a maximum error 8f ®s~!, so our
Our function evaluation circuits consist of many differgmqges requirement can be modified as
of operators including adders, barrel shifters, condélsen —bp—1
dividers, multipliers etc., making the designs complex and €ap + €ur < 2 ’ (7)
difficult to analyze. Hence, a numerical approach is taken k#aking the precisions of the variablés, large enough, it
tackle the range and precision minimization problems. is possible to meet this error requirement, singg gets
Range analysis involves inspecting the dynamic range aaxbitrarily small with¢,,.. The challenge is to keep,, as
working out the bit-widths of the integer parts. Using irfsuf small as possible, while meeting the error requirement)n (7
cient bits for the range can cause overflows or underflows, ahal keep the optimization process simple and fast, we employ
excessive bits waste valuable hardware resources. Oue raagiform (the same) fractional bit-widths for all variables.
analysis method uses a simulation based approach, whdre a&e propose a binary search method to find the optimal uniform
input of the design is supplied with a large set of randofnactional bit-widthb,,. Our definition of “optimal uniform”
numbers, which ranges over the interval of possible valupgeans that the polynomial degree (in the cageodbr number
for the particular input, including the extreme values ddtth of segments (in the case tf) is the same amin_degree
interval. We then record the maximum absolute values fon eagr min_segs in Fig. 9.
variable. No rounding is performed, in other words double The fractional bit-width of the output of the approximation
precision is used throughout. circuit b, can be analytically pre-determined by examining the

IEEE TRANSACTIONS ON COMPUTERS

b_u = b_f; // set initial b_u to precision of f
r = 2°6; /I initial search space e.g. 2°6

for i=1:(log2(r)+1)
r = r/2; /I reduce search space by half

if (m=='po’) // for polynomial-only (po)
my_degree = find_degree(f,i,b_u);
/I compare my_degree with the minimal
if (my_degree > min_degree)
bu=bu+r
else
bu=bu-rn
end

elseif (m=="'tp’) // for table+polynomial (tp)
my_segs = find_segs(f,i,d,b_u);
/I compare my_segs with the minimal
if (my_segs > min_segs)
bu=bu-+r
else
bu=bu-mrn
end
end

end

bu=bu=+r

Fig. 10. Structure of our MATLAB tool to find the optimal unifo fractional
bit-width b,,.

range reconstruction part. Looking at Fig. 5, the recoisivn
of sin(z) is simply a sign change, hence

for sin(x), by =by.

(8)

Area
Optimization — —
(Sequential)
Latency
Optimization
(Combinatorial)

S l=

Fig. 11. Principles behind automatic design optimizatioASC. The shaded
areas represent flip-flops.

Throughput
Optimization
(Pipelined)

HWfloat , which can store integers, fixed-point numbers and
floating-point numbers, respectively. For this paper, wethe
HWfix type. As a result of this work, function evaluation in
ASC is performed with the following declarations and lityrar
call:

HWfix x(TMP, x.range+x.prec, x.prec, sign_mode);

HWfix f(TMP, f.range+f.prec, f.prec, sign_mode);
f = HWsin(x);

In order to create an optimized function evaluation library
the MATLAB tool described in Section VI is utilized to
generate a large amount of ASC code. This ASC code forms
a two-dimensional matrix, which is indexed by range and
precision of the argument to the function evaluation cadictc
matrix entry consists of a pointer to an ASC function which is
called for the particular input. For instance, for each function
we can determine two design selection matrices: for minimal

Forlog(z) reconstruction, there is an addition with a variableyreq and for minimal latency. TheWsin(x) call indexes

Using one guard bit for the addition,

for log(z), by ="0bs+1. 9)

Looking at the reconstruction step ¢fr, g is shifted byezpl

(Fig. 5). This means that we neéd = [exp + b] to have

enough bits to guarantée fractional bits at the outpuf. By
analyzing the range reduction step, one can seecthat can
be a maximum of/z.range/2] bits wide. Hence,

for Vx, b, =

wherebs = b, = z.prec.

[z.range/2] + by, (10)

into the matrix to find the optimized ASC implementation.
The function evaluation code, for example (), then in-
dexes into the matrix of function pointersl\\Vsin_matrix)

and accesses the correct function based on input range and
precision:

HWfix &HWsin(HWfix &x){
return HWSsin_matrix[x.range][x.prec](x);

}

The design of such matrices are demonstrated in Section IX.
ASC provides an automated mechanism for optimizing
designs for user specified metric [9]. The current supported

i F!g. 10 shows _the sj[ructure of our MATLAB tool used forayics are area, latency and throughput. Fig. 11 illustrat
finding _theb“,' Using b'”afY seqrcrbu gradual!y approachesy, this is achieved. In area optimization mode, ASC uses
the optimal inlog, (r) + 1 iterations, where- is the search goq ential arithmetic units, e.g. for multiplication ASEests
space. The initial search spaceneeds to be a power of tWo 5, 54 _accumulate unit. In latency optimization mode, 1o fi
and large enough to cover the largest possthle flops are being inserted and as a consequence the resulting
circuit is purely combinational. In throughput optimizati
VIIl. H ARDWARE DESIGN SPACE EXPLORATION AND mode, all flip-flops that are present in the slices utilized ar
OPTIMIZATIONS being used. The resulting circuit is balanced (schedulgd) b
ASC, A Stream Compiler [9], is a C-like programmingusing FIFO buffers in between the arithmetic units.
environment for FPGAs. ASC code makes use of C++ syntaxAll together, the 2000 lines of MATLAB code generate 648
and ASC semantics which allow the user to program on tihardware designs targeting FPGAs, which result in 300,000
architecture-level, the arithmetic-level and the gateelleAs lines of ASC code. We also generate a number of additional
a consequence ASC code provides the productivity of higtiesigns to examine the area cost of range reduction, which is
level hardware design tools and the performance of lowliscussed in Section IX. For each design, ASC generates thre
level optimized hardware design. ASC provides types amsigns which are optimized for area, latency and throughpu
operators to enable research on custom data represerdgatonThe result is a huge experimentation space of over 2000 FPGA
arithmetic. Currently supported types at@vint , HWfix and designs. These are placed-and-routed on the recentiysezle

IEEE TRANSACTIONS ON COMPUTERS

sin(x) — Precision 16 bits

15000

Table Size [bits]

10000

—+— tp2 with range reduction

20000f

—<— po
-+~ tp2 without range reduction -x- tp3
—6— tp3 with range reduction X tp5

-©- tp3 without range reduction
—— tp4 with range reduction
- * - tp4 without range reduction

5000r

3
Range [bits]

16000

Area [slices]

8000

40001

12000r

Vx — Range 20 bits

12 16
Precision [bits]

20

24

Fig. 12. Table size comparison when evaluatiiig(z) at precision of 16 Fig. 13. Area usage of different methods at various preassior evaluating
bits with range reduction and without range reduction. vz with a range of 20 bits.

Xilinx Virtex-4 XC4VLX200-11 FPGA, which is the largest) o

device of the Xilinx Virtex-4 LX family. The designs arelinear manner with range and precision except foz(z),
synthesized with ASC and placed-and-routed with Xilinx IS@/here it stays pretty much constant with range. As noted
6.3, resulting in over 100 million ASIC equivalent gatesisTh arlier, the complexity of the range reduction circuitsaf(x)
work flow which is fully automated with a single “makefile”,increases with range. Fer'z, the accuracy requirement of the
takes a weeks' time on two dual Intel Xeon 2.6GHz PCs wifdPProximation circuit grows with range. Hence, the inceeas
4GB DDR-SDRAM. The makefile accepts design space el by .for the tvyo functions. Lopklng at the three functions, the
ploration parameters including range/precision sets;tfans, Pit-width requirement ofog(z) is low, whereasin(z) andy/z
approximation methods and metric optimizations. The fin&/€ both high. Finally, the plots Fig. 14 give us an indicatio

output is a report file containing area, latency and throughghat vz takes the most area, followed bjn(x) andlog(z).
results for the user specified parameters. Fig. 12 shows a comparison in table size as a function of

range, when evaluatingin(x) at precision of 16 bits with
range reduction and without range reduction for thpemeth-
84's. Note that the term range reduction is used to also ieclud

and-routed FPGA results. The device independent resudts ggnae reconstruction. When the function is evaluated witho

obtained using our MATLAB tool at the algorithmic desigr{a_nge reduction, the whole input interval is approximated
space exploration stage, showing table sizes and bit-wioith without the use of a range reduction step. As one would expect

the variables. The placed-and-routed results are obtaisied the table size stays constant with range when range redustio

ASC and Xilinx ISE on a Xilinx Virtex-4 XC4VLX200-11 used. However, when range reduction is not used, the tatgle si
FPGA device increases exponentially with the range, since each additio

bit in the range doubles the interval of approximation. Weeno
that when the range is small (e.g. less than two bitstfay,

A. Device Independent Results with MATLAB . : . .
)))) _it is more sensible to skip range reduction due to the smaller
Before mapping designs into actual hardware devices, iti§|e size.

interesting to explore the tradeoffs at the algorithmicelev

The plots in Fig. 14 show the table size and uniform fractiona

width b,, variations at different ranges and precisions ugigy B+ Placed-and-Routed Results on FPGA

We observe that for all three functions, the table size growsWe summarize the results of the 2000 FPGA implemen-

with precision.,/z has the largest table size requirement, fotations obtained with the ASC system discussed in Sec-

lowed bysin(x) andlog(x). This follows from the discussionstion VIIl. One dimension of the design space is technology

in Section IV: more resources are needed for functions withapping on the FPGA side. In addition to slices, the Virtex-

a large approximation interval and a large first derivatMee 4 FPGA contains embedded RAMS and multiply-and-add

table size increases with both range and precisioR/ferThis blocks. However, in this work, we decide to use slices only

is due to the accuracy of approximatigrbeing dependent on to make the comparisons easier and fairer. To implement the

both range and precision as seen in (10). From (8) andy(9)coefficient tables, the 4-input LUTs are used together with

is independent of the range feim(z) andlog(z). Hence for logic minimization [17]. Instead of using the 4-input LUTs

log(z), we see no change in table size with range. Howevelirectly as memory (known as distributed RAM), this apptoac

slight increase can be seen fdn(x). This is because the can lead to smaller and faster tables for the designs used in

complexity of the modulus operation which incorporates this work.

divider in the range reduction circuit efn(x), increases with Fig. 13 shows the area requirementspof tp3 and tp5 at

the input range. various precisions for evaluatingz with a range of 20 bits.
The size ofb, gives us an indication of the operatoMVe recognize that this figure is analogous to the example used

complexities in the design. We see thiat increases in a in Fig. 1. For these particular set of parameters, for pietss

IX. RESULTS
In this section, we present device independent and plac

IEEE TRANSACTIONS ON COMPUTERS 9

sin(x) - tp3 log(x) - tp3 VX - tp3

— 5000 _ . 40000

2 £ 3000 2

2, 4000 2, S, 30000

(0] () (0]

8 3000 8 2000 2 20000

D 9000l n 7

2 2 1000 2 10000

S 1000 5 k=

= i P

20 20 20
10 0 10 0 10 0
Range [bits] 5 Precision [bits] Range [bits] 5 Precision [bits] Range [bits] 5 Precision [bits]
sin(x) — tp3 log(x) — tp3

) 2 2

g 8 25 =)

c c c

2 £ 20 S

Q Q Q

© © ©

i T 15 i

£ 1S 1S

S s S

c c c

] S S

20
10 0 B
Range [bits] 5 Precision [bits] Range [bits] 5 Precision [bits] Range [bits] 5 Precision [bits]

Fig. 14. Device independent results with MATLAB: table size and uniform fractional bit-width, variations at different ranges/precisions ustp8.

log(x) - tp3 — Latency Opt Vx - tp3 - Latency Opt

30000
— — 6000 — 25000
@ @ @
2 8 8 20000
B, B, 4000 9, 15000 4 -
[15] © [15]
] & 5000 § 10000
< < < 5000

- - 15 20 15 20
A 10 = 10 10 = 10
Range [bits] Precision [bits] Range [bits] Precision [bits] Range [bits] Precision [bits]
sin(x) — tp3 — Latency Opt log(x) — tp3 — Latency Opt VX = tp3 - Latency Opt
%) o o
=3 K= K=H
> > >
o (8] Q
c = c
[} Q Q
IS © T
- '} -
Range [bits] 5 Precision [bits] Range [bits] 5 Precision [bits] Range [bits] 5 Precision [bits]

Fig. 15. Placed-and-routed results on FPGA:area and latency variations at different ranges/preasigsingtp3 with latency optimization.

less than 16 bitspo results in the minimal are#p3 gives the the most area, followed byin(z) and log(x). This can be
least area between 16 and 20 bits, &pfl provides the least explained by the table size requirements shown in Fig. 14:
area above 20 bits. large tables lead to large utilizations of 4-input LUTSs. \kéwees

Fig. 15 shows the area and latency variations for variotli€ table size fosin(z) stays relatively constant with range in
range/precision combinations usitg. Latency optimization Fig- 14, the area usage is actually increasing. This is [righa
is chosen to illustrate these design spaces, since corokiadat due to the presence of divider in the range reduction step,
circuits best reflect the complexity of designs. Lookingle t whose area requirement increases with its operand size. The
two figures, we see a remarkable consistency to the devigency results area related to the uniform fractionalbdth
independent results in F|g 14, Suggesting that our appro&@ in F|g 14. SinCd)u dictates the size of the Operands such
could be applied across different device technologies. as adders, dividers and multipliers.

From the area results in Fig. 15, we observe {fiatrequires Fig. 16 and 17 highlight the area cost of range reduction for

IEEE TRANSACTIONS ON COMPUTERS 10

sin(x) - tp3 — Latency Opt sin(x) — Range 12 bits - Precision 12 bits
- - T T T T 4500
120001] Prec 4 bits] X O tp2 - Area Opt
[Prec 8 hits 40001 +. O tp3 - Area Opt
[Prec 12 bits * O tpd — Area Opt
100007 @l Prec 16 bits A tp5 - Area Opt
. 3500
_ I Prec 20 bits _ ® tp2 - Latency Opt
g 8000j Il Prec 24 bits 8 2000] 4 ® tp3 - Latency Opt
2 = 4 tp4 - Latency Opt
‘< 6000 = A tp5 - Latency Opt
g g‘(_’ 2500 ¢ + tp2 - Throughput Opt|
2000, : * tp3 - Throughput Opt
I I 2000 * tp4 — Throughput Opt|
X tp5 - Throughput Opt
20001 . II III II‘ 1500 A
0O o
oLl ==l ol | 000 © o
4 8 12 16 20 24 0 1000 2000 3000 4000 5000 6000 7000
Range [bits] Latency [ns]

Fig. 16. Area cost of range reduction (upper part)dor(z) usingtp3 and

vea Lt Fig. 18. Pareto-optimal points in the area-latency spacé2ebit range and
latency optimization.

12-bit precision evaluation tein(z).

log(x) — tp3 — Latency Opt sin(x) — Range 12 bits — Precision 12 bits

4500
10000 1 Prec 4 bits x O tp2 - Area Opt
[Prec 8 bits 4000 + O tp3 - Area Opt
goooll [Prec 12 bits] * O tp4 - Area Opt
I Prec 16 bits 3500 A tp5 - Area Opt
Il Prec 20 bits _ ® tp2 - Latency Opt
g 60001 Il Prec 24 bits é 3000 & : :pi B II:atency 8pt
ot z 2 95 Latency Opt
@
E 4000 ST:) 25001 ¢ + tp2 - Throughput Opt]
< u % tp3 - Throughput Opt|
2000 @ « tp4 - Throughput Opt]
2000} 0 0 X tp5 — Throughput Opt]
0 O 1500 A
O
il -l il
oAl Al I 1000
4 8 12 16 20 24 0 100 200 300 400 500 600 700
Range [bits] Throughput [Mbps]

Fig. 17. Area cost of range reduction (upper part)lfeg(z) usingtp3 and Fig. 19. Pareto-optimal points in the area-throughput sgac 12-bit range
latency optimization. and 12-bit precision evaluation tdn(z).

sin(z) andlog(z), with the approximation circuit implementegdue to their shallower multiply-and-add tree illustrated i
using tp3. The lower part of the bars shows the slices usddd: 8- In terms of area, low polynomial degree designs are
for function approximation, and the small upper part shov@nerally smaller for the same reason. However, table size
the slices used for range reduction. For both functionsait c9"0Ws with the precision required, making low polynomial
be seen that the cost of range reduction grows with range dtfree designs potentially larger, as demonstrated in18g.
precision. This is mostly due to the modulus incorporated jn AS Proposed in Section VI, Fig. 20 sums up the most
sin(z), and the barrel shifter and multiplier iog(z), which interesting rgsults in two matrices, whlt_:h shovy the Pareto-
are all affected by the operator size. The range reducti8Rtimal solutions for different range/precision pairsthiugh
cost forsin(z) is considerably higher thalvg(z), because Many more matnc_es can be generated for different me_trlc and
the modulus operator contains a division. On average, tAgtimization combinations, we choose these_ two matrices fo
percentage area used by range reductiosifoir) andlog(z) |Ilus.trat|on purposes_of our approach. 'I_'he first matrix stlpw
are 37% and 23%, respectively. The behaviox,@f is found designs that result in minimal area with area optimization,

to be similar talog(z), due to their resemblance in their rang@"d the second matrix shows designs that result in minimal
reduction circuits. latency with latency optimization. For instance, from thstfi

The scatter plots in Fig. 18 and 19 highlight the Paretgalrix, the dashed box tells us that fosia(x) design with

optimal [17] points in the area-latency and area-throuq;]hpjc?'blt range and 12-bit precision, the smallest implerrtema

space. The evaluation efn(z) with 12-bit range and 12-bit would betp2 with a uniform fractional bit-width of 20 bits

precision is chosen as an example. Assotfednethods are and a table siz_e Of_504 bits. In essence, 'Fh_ese ma_triceSteII u
shown, performed with area, latency and throughput opla'u:niz]cor each combination of range and precision, which _method
tions. As expected, designs optimized for a particular imett© USe for the three functions to get the minimal metric.

result in best performance in its own metric. With the aid of] .

such plots, one can decide rapidly what methods to use for Performance of the Units and their Usage

meeting specific requirements in area, latency or throughpu Recent processors such as those based on the 1A-64 archi-
Focusing on the latency optimized results in Fig.tp8Jesigns tecture can evaluate functions in between 50 and 70 clock

with lower polynomial degrees are always going to the fasteycles [18]. Considering a typical processor clock speed of

IEEE TRANSACTIONS ON COMPUTERS 11

Minimal Area (Optimized for Area)

sin: po2,24, 76 |sin:tp2,28, 348 |sin:tp2,32, 792 |sin:tp3,32, 1056 |sin: po6, 40, 288 |sin: tp5,42, 1032
24 |log:po2, 7, 27 |log:tp2,12, 78 |log:tp2,15 384 |log:tp3,19, 640 |log:tp4,24, 1000 |log:tp3, 28, 3712
sqr:tp2,18, 912 |sqr:tp4,22, 920 |sqr:tp6, 27, 784 |sqr:tp5, 33, 1632 | sqr: tp6, 35, 2016 | sqr: tp6, 39, 4480

sin:po2,19, 61 |sin:tp2,24, 300 |sin:tp2,28, 696 |sin:tp3,32, 1056 |sin:tp5,32, 792 |sin:tp5,38, 936
20 |[log:po2, 7, 27 |log:tp2,12, 78 |log:tp2,15 384 |log:tp3,19, 640 |log:tp4,24, 1000 |log:tp5, 28, 696
sqr:tp2,18, 456 |sqr:tp4, 20, 420 | sqr:tp4, 24, 1000 | sqr:tp5, 28, 1392 | sqr: tp6, 32, 1848 | sqr: tp6, 37, 4256

sin: po2,16, 52 [sin:tp2,19, 240 |sin:tp2,24, 600 |sin:po5,28, 174 |sin:po6,32, 232 |sin:tp5,32, 792

7 16 |log: po2, 7, 27 |log: tp2, 12, 78 |log: tp2,15, 384 |log:tp3,19, 640 |log:tp4,24, 1000 |log: tp5,28, 696

=y sqr:tp3, 15, 128 |sqr:tp2,18, 912 | sqr:tp4, 22, 920 |sqr:tp6, 27, 784 |sqr:tp5,33, 1632 | sqr: tp6, 35, 2016
)

g sin:po2, 9, 31 [sin:tp2,16, 204 [Sin:tp2, 20, 504 sin:tp3,24, 800 |sin:po6, 28, 204 |sin:tp5,32, 792

o 12 |log:po2, 7, 27 |log:tp2,12, 78 |log:tp2,15, 384 |log:tp3,19, 640 |log:tp4, 24, 1000 |log: tp5, 28, 696

sqr:tp2,12, 156 |sqr:tp2,18, 456 | sqr:tp4, 20, 420 |sqr:tp4, 24, 1000 |sqr:tp6,29, 840 |sqr:tp6, 32, 1848

sin: po2, 6, 22 |[sin:tp2,10, 132 |sin:tp2,16, 408 |sin:tp4,19, 400 |sin:tp5,24, 600 |sin:tp5,28, 696

8 |log:tp2, 6, 21 [log:tp2,11, 72 |log:tp2,15, 384 [log:tp3,19, 640 |log:tp4, 24, 1000 |log: tp5, 28, 696

sqr:tp2, 10, 66 [sqr:tp3,15, 128 |sqr:tp2,18, 912 |sqr:tp4,22, 920 |sqr:tp6, 27, 784 |sqr:tp5, 28, 1632

sin:po2, 6, 22 [sin:tp2,10, 132 |sin:tp3,14, 240 |sin:tp4,18, 380 |sin:tp5,22, 552 |sin:tp4,27, 1120

4 |log:tp2, 6, 21 |log:tp2,11, 72 |log:tp2,15, 384 |log:tp3,19, 640 |log:tp5,24, 600 |log:tp5,28, 696

sqr:po2, 7, 25 [sqr:tp2,12, 156 |sqr:tp2,18, 456 |sqr:tp4,20, 420 |sqr:tp4, 24, 1000 | sqr:tp6,29, 840

4 8 12 16 20 24
Precision [bits]
Minimal Latency (Optimized for Latency)

sin: tp2,24, 78 |sin:tp2,28, 348 |sin:tp2,32, 792 |sin:tp2,32, 3168 |sin:tp2,40, 7872 |sin:tp3, 42, 5504

log: po2, 8, 30 |log:tp2,12, 78 |log:tp2,15, 384 |log:tp2,21, 1056 |log: tp2, 24, 4800 |log: tp2, 28,11136

24 |sqr:tp2,18, 912 |sqr:tp2, 24, 2400 | sqr: tp2, 26,10368 | sqr: tp2, 30,23808 | sqr: tp3, 34,17920 | sqr: tp4, 39,12800

sin: po2,19, 61 |[sin:tp2,24, 300 |sin:tp2,28, 696 |sin:tp2,32, 3168 |sin:tp2,32, 6336 |sin:tp3, 38, 4992

log: po2, 7, 27 |log:tp2,12, 78 |log:tp2,15, 384 |log:tp2,21, 1056 |log:tp2, 24, 4800 |log: tp2, 27,10752

20 |sqr:tp2,18, 456 |sqr:tp2,20, 2016 | sqr: tp2, 24, 4800 | sqr: tp2, 32,12288 | sqr: tp3, 33, 8704 | sqr: tp3, 37,19456

sin: tp2,16, 54 |sin:tp2,19, 240 |sin:tp2,24, 600 |sin:tp2,28, 2784 |sin:tp2,32, 6336 |sin:tp3, 32, 4224

w log: po2, 7, 27 |log:tp2,12, 78 |log:tp2,15, 384 |log:tp2,21, 1056 |log:tp2, 24, 4800 |log:tp2,27,10752

Q, 16 |[sqr:tp2,17, 324 |sqr:tp2,18, 912 |sqr:tp2, 24, 2400 |sqr: tp2, 26,10368 | sqr: tp2, 30,23808 | sqr: tp3, 34,17920
)

2 sin:po2, 9, 31 |sin:tp2,16, 204 |sin:tp2,20, 504 |sin:tp2,24, 2400 |sin:tp2,28, 5568 |sin:tp2, 32,12672

g log: po2, 7, 27 | log: tp2, 12, 78 | log: tp2,15, 384 |log:tp2,21, 1056 |log:tp2, 24, 4800 |log: tp2,27,10752

12 |sqr:tp2,12, 156 |sqr:tp2,18, 456 |sqr:tp2, 20, 2016 | sqr: tp2, 24, 4800 | sqr: tp2, 31,12288 | sqr: tp3, 33, 8704

sin:po2, 6, 22 |sin:tp2,10, 132 |sin:tp2,16, 408 |sin:tp2,19, 1920 |sin:tp2,24, 4800 |sin:tp2, 28,11136

log: po2, 7, 27 |log:tp2,11, 72 |log:tp2,15, 384 |log:tp2,21, 1056 |log:tp2, 24, 4800 |log: tp2, 27,10752

8 |sqr:tp2, 7, 27 | sqr:tp2,17, 324 |sqr:tp2,18, 912 |sqr:tp2, 24, 2400 |sqr: tp2, 26,10368 | sqr: tp2, 30,23808

sin: po2, 6, 22 |[sin:tp2,10, 132 |sin:tp2,15, 384 |sin:tp2,19, 1920 |sin:tp2,23, 4608 |sin:tp2, 28,11136

log: po2, 7, 27 |log:tp2,11, 72 |log:tp2,15, 384 |log:tp2,17, 1056 |log:tp2, 24, 4800 |log:tp2,27,10752

4 |sqr:po2, 7, 25 |sqr:tp2,12, 156 |sqr:tp2,18, 456 |sqr:tp2,20, 2016 |sqr:tp2, 24, 4800 |sqr:tp2, 31,12288

4 8 12 16 20 24

Precision [bits]

Fig. 20. Area (with area optimization) and latency (withelaty optimization) matrices showing for each range/prcicombination, the design with
minimal area and latency. For each entry, the optimal metbadorm fractional bit-width and table size in bits are wimo The number aftepo indicates
the polynomial degree used. For instance, the dashed Hexutethat for asin(x) design with 12-bit range and 12-bit precision, the smailegtiementation
would betp2 with a uniform fractional bit-width of 20 bits and a table einf 504 bits.

3GHz, this means that a result can be produced in around 2Gasa step in the hardware optimization process, after thgeran
The automated throughput optimized designs in this work aaed precision have been determined by application devedope
fully pipelined and have a clock speed of around 100MHar by other methods [16].

(much higher clock speeds could be achieved with manual

pipelining), meaning that we can produce a result every 10ns X. CONCLUSIONS

which is a speed-up of a factor of two over a 3GHz processor. . . .
. : . . A methodology and an automated function evaluation unit
Since one function evaluation unit does not take much space

on an EPGA. we could have multiole units running in aralleigeneration, for given function and a set of user requirement
. N pie ur 9inp With custom range and precision values have been presented.
potentially resulting in orders of magnitude speed-up.

The result is an optimized fixed-point function evaluation
The proposed method is developed to produce, for a givgenerator library for hardware designs. Our approach has be
function, metric, range and precision, an optimal hardwademonstrated with three elementary functieis(z), log(x)
function evaluation unit. The results can be arranged in thed/r for 36 range and precision combinations between 8
form of matrices as shown in Fig. 20. Our method can be seand 48 bits. MATLAB is used for algorithmic design space

IEEE TRANSACTIONS ON COMPUTERS 12

exploration and ASC code generation, while ASC is used fr] G. De Micheli, Snthesis and Optimization of Digital Circuiits.
perform hardware design space exploration targeting FPGAs McGraw-Hill, 1994. _
. . . e LlS] J. Harrison, T. Kuba_ska, S. Story, and P. 'I"ang, “The aatatpn of

The degrees of freedom including applicability of rang transcendental functions on the 1A-64 architecturftel Technology
reduction, approximation method selection, and hardware 0 Journal, vol. Q4, 1999.
timization have been discussed. Bit-width optimizatiochte
nigues for minimizing both range and precision have been
proposed, based on a binary search technique. We have
examined various device independent and device specific
results, covering a vast design space of over 2000 desig
equivalent to 100 million ASIC gates. We have shown tw-_s
matrices showing for each range/precision combinationghvh
approximation method to use for minimal area and latency.
conclude that the automation of optimized hardware fumncti

Dong-U Lee(S'01-M’'05) received the BEng degree
in information systems engineering and the PhD
degree in computing, both from Imperial College
London in 2001 and 2004, respectively. He is cur-
rently a postdoctoral researcher at the Electrical
Engineering Department, University of California,

. . L ; . Los Angeles (UCLA), where he is working on chan-
evaluation is already within reach. w nel codes and symbol timing synchronization for
gt deep-space communications with the Jet Propulsion

o Laboratory, NASA. His research interests include

ACKNOWLEDGMENTS computer arithmetic, communications, design au-

. toration, figurabl ti d video i dogsHe |
The authors thank Ray C.C. Cheung, David Pearce amo rﬁtl)zl: oﬁﬁgn,gé'éa © compliing and wiceo fmage pramgssie Is a

the anonymous reviewers for their assistance. The support
of the Jet Propulsion Laboratory, Xilinx Inc., and the U.K.
Engineering and Physical Sciences Research Council (Grant
number GR/N 66599, GR/R 55931 and GR/R 31409) is

gratefully acknowledged. Altaf Abdul Gaffar received the BEng degree
in information systems engineering from Imperial
College London in 2000 and is completing the PhD
degree in computing at the same university. He is
also currently working as a research assistant at the
Electrical and Electronic Engineering Department
at Imperial College London. His research interests
include bit-width optimization for floating-point and
fixed-point arithmetic, and high-level power estima-
tion and optimization techniques. He is a member

REFERENCES

[1] E. O'Grady and C. Wang, “Performance limitations in piaigprocessor
simulations,” Trans. Society for Computer Smulation, vol. 4, pp. 311-
330, 1987.

[2] J. Muller, Elementary Functions: Algorithms and Implementation.
Birkhauser Verlag AG, 1997.

[8] O. Mencer and W. Luk, “Parameterized high throughput cfion of the |IEEE.
evaluation for FPGAs,J. VLS Sgnal Processing, vol. 36, no. 1, pp.
17-25, 2004.

[4] J.E. Stine and M.J. Schulte, “The symmetric table additmethod for
accurate function approximationJ. VLS Sgnal Processing, vol. 32,
no. 2, pp. 167-177, 1999.

[5] R. Andraka, “A survey of CORDIC algorithms for FPGA bassmmput-
ers,” inProc. ACM/SIGDA Int'| Symp. Field-Programmable Gate Arrays,
1998, pp. 191-200.

[6] A.Peymandoust and G. De Micheli, “Application of symisotomputer
algebra in high-level data-flow synthesi$ZEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, vol. 22, no. 9, pp. 1154-1165,
2003.

[7] C. Maxfield, The Design Warrior’'s Guide to FPGAs. Newnes, 2004.

[8] Virtex-4 Family Overview, Xilinx Inc., 2004, http://www.xilinx.com.

[9] O. Mencer, D. Pearce, L. Howes, and W. Luk, “Design spagzogation
with A Stream Compiler,” irProc. |[EEE Int'l Conf. Field-Programmable
Technology, 2003, pp. 270-277.

[10] D. Das Sarma and D. Matula, “Faithful bipartite ROM gacical tables,”
in Proc. IEEE Symp. Computer Arithmetic, 1995, pp. 17-28.

[11] M.J. Schulte and E.E. Swartzlander Jr, “Hardware desifpr exactly
rounded elementary functiondEEE Trans. Computers, vol. 43, no. 8,
pp. 964-973, 1994.

[12] J. Walther, “A unified algorithm for elementary funai®” in Proc.
AFIPS Sporing Joint Computer Conf., 1971, pp. 379-385.

[13] D. Lee, A. Abdul Gaffar, O. Mencer, and W. Luk, “Adaptivenge
reduction for hardware function evaluation,” Rroc. |IEEE Int'l Conf.
Field-Programmable Technology, 2004, pp. 169-176.

[14] I. Koren and O. Zinaty, “Evaluating elementary functsoin a numerical
coprocessor based on rational approximatioHsEZE Trans. Computers,
vol. 39, no. 8, pp. 1030-1037, 1990.

Oskar Mencer received his PhD in electrical en-
gineering from Stanford University. He founded
MAXELER Technologies in 2003 after three years
as Member of Technical Staff in the Computing
Sciences Research Center at Bell Labs. He is cur-
rently a member of academic staff in the Depart-
ment of Computing at Imperial College London.
His research interests span computer architecture,
computer arithmetic, VLSI microarchitecture, VLSI
CAD, and reconfigurable (custom) computing. He is
a member of the IEEE.

Wayne Luk (S'85-M'89) received the MA, MSc,
and PhD degrees in engineering and computer sci-
ence from the University of Oxford. He is a member
of academic staff in Department of Computing,
Imperial College London and leads the Custom
Computing Group there. His research interests in-
clude theory and practice of customizing hardware
and software for specific application domains, such

[15] G. Constantinides, P. Cheung, and W. Luk, “Wordlengitiroization for | : as graphics and image processing, multimedia, and
linear digital signal processinglEEE Trans. Computer-Aided Design of & el ‘x communications. Much of his current work involves
Integrated Circuits and Systems, vol. 22, no. 10, pp. 1432-1442, 2003. high-level compilation techniques and tools for par-

[16] K. Kum and W. Sung, “Combined word-length optimizatiand high- qllel compute_rs and embedded systems, particularly tho_rammmg recon-
level synthesis of digital signal processing system&EE Trans. figurable devices such as field-programmable gate arrayss Blenember of
Computer-Aided Design of Integrated Circuits and Systems, vol. 20, the IEEE.
no. 8, pp. 921-930, 2001.

