
CUSTARD - A Customisable Threaded FPGA
Soft Processor and Tools

Robert G. Dimond, Oskar Mencer, and Wayne Luk

Department of Computing, Imperial College, London, England

Abstract. We propose CUSTARD — CUStomisable Threaded AR-
chitecture — a soft processor design space that combines support for
multiple hardware threads and automatically generated custom instruc-
tions. Multiple threads incur low additional hardware cost and allow
fine-grained concurrency without multiple processor cores or software
overhead. Custom instructions, generated for a specific application, ac-
celerate frequently performed computations by implementing them as
dedicated hardware. In this paper we present a flexible processor and
compiler generation system, FPGA implementations of CUSTARD and
performance/area results for media and cryptography benchmarks.

1 Introduction

This paper introduces the Customisable Multi-threaded Processor: CUSTARD.
CUSTARD is a parameterisable processor that combines support for multiple
hardware threads and automatic instruction set customisation. We propose the
customisable threaded architecture as an FPGA soft processor for System-on-a-
Programmable-Chip (SOPC) applications with high performance requirements.
Processor implementations are supported by our optimising C compiler that
automatically generates custom instructions from C applications. We generate
custom instructions by finding frequently occurring segments of computation
that can be evaluated using the same hardware datapath.

This paper presents four main achievements:

1. CUSTARD, a customisable multi-threaded soft processor with parameteri-
sations including number of threads, threading type, datapath bitwidths and
custom instructions.

2. A C compiler that targets CUSTARD and automatically generates custom
instructions.

3. A methodology to customise a multi-threaded processor for an application.
4. FPGA implementations of customised processors with area and performance

results for five media and cryptography benchmarks.

Soft processors — instruction processors implemented within the reconfig-
urable fabric of an FPGA — provide control and data processing functions for
a reconfigurable system. Soft processors provide three key advantages over a
fully application specific datapath/state machine: Firstly, the capability to han-
dle large applications. Secondly, a software design flow for rapid implementation



and testing. Thirdly, soft processors allow a designer to build complete systems
on inexpensive FPGAs that do not provide a hard-core processor such as ARM
or PowerPC.

Customisable processors are emerging as a technique for optimising perfor-
mance in embedded applications. Customising the processor instruction set to
directly implement frequently performed operations can provide a performance
gain for a small additional area required to support these instructions [12].
XTensa [13] and ARC[1] are examples of commercial customisable processors
targeted at performance critical System-on-Chip applications. XTensa and ARC-
tangent processors can be extended with custom instructions specified by the
designer.

Recent research [3, 8] has demonstrated strategies for automatically parti-
tioning applications into segments implemented using basic instructions (add,
subtract, shift etc.) and segments implemented directly in hardware as custom
instructions. We use a novel approach that finds frequently occurring program
segments that can be computed using the same hardware datapath. These dat-
apaths are integrated into the processor pipeline as custom instructions.

Our multi-threaded processor supports multiple contexts within the same
processor hardware. A context is the state of a thread of execution, specifically
the state of the registers, stack and program counter. Supporting threads at the
hardware level brings two significant benefits. Firstly, a context switch — chang-
ing the active thread — can be accomplished within a single cycle, enabling a
uniprocessor to execute two concurrent threads with little or no overhead. Sec-
ondly, a context switch can be used to hide latency where a single thread would
otherwise busy-wait. A comprehensive survey of multi-threaded processors, their
various configurations and advantages is available in [14].

The major cost of supporting multiple threads stems from the additional
register files required for each context. Fortunately, current FPGAs are rich in
block SRAM that could be used to implement large register files. Additional logic
complexity must also be added to the control of the processor and the current
thread must be recorded at each pipeline stage. However, the bulk of the pipeline
and the functional units are effectively shared between multiple threads, so we
should expect a significant area saving over a multi-processor configuration.

MicroBlaze [16] and Nios [2] are examples of existing soft processors provided
by FPGA vendors. Neither has any multi-threading ability although embedded
multi-threaded processors are emerging in the ASIC world, for example Tri-
core [11] and META [10]. The Java multi-threaded processor [15] is a research
example that provides hardware support for the Java threads model. As such,
CUSTARD is the first customisable multi-threaded processor for FPGA’s.

This paper is organised as follows: Section 2 of this paper describes our
methodology and tool flow. Section 3 describes the architecture and parameter-
isations of CUSTARD. Section 4 describes the compiler and software tools to
support customisation. Section 5 presents quantitative results for five embedded
benchmarks running on instantiations of CUSTARD. Finally, Section 6 provides
a conclusion and suggestions for future work.



Processor
template

Multi-threading: Type/Number of threads
Register file: Ports/Bitwidths/Number

Memory system: Cache sizes/Architecture
Application

Compiler

Generate
processor

FPGA
Place & Route

Cycle-accurate
simulator

Customised
processor

CUSTARD

Executable
code

Custom
instructions

Fig. 1. Toolflow for a processor customised for a particular application.

2 Methodology and Tool Flow

Our methodology is to customise a multi-threaded processor to an application,
using a combination of designer specified parameters and automatic design per-
formed by a compiler. Figure 1 shows the overall tool flow from application to
customised processor.

The inputs to the system are:

1. The application, specified in a high-level language such as C.
2. A parameterisable processor that serves as a template.
3. A set of user specified processor parameters.

The application code is analysed statically by the compiler. The compiler then
generates a set of custom instructions to accelerate the application. Generated
custom instructions are combined with the designer specified parameters to in-
stantiate a synthesisable netlist for the processor.

The user parameters specify high level architectural features, most impor-
tantly the number of hardware threads supported by the architecture. Optimal
values for these can be found by simulation or from the intrinsic requirements
of the application. The results section of this paper sheds further light on the
impact of parameterisation decisions.

The compiler identifies custom instructions via static analysis of the appli-
cation code. Custom instructions implement frequently performed computations
in dedicated datapaths. Replacing a sequence of instructions by a single custom
instruction reduces the overhead of instruction fetch and the total number of
cycles required for the computation.



��
��
��
��

��
��
��
��

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

FORWARDING

FORWARDING_BRANCH

CUSTOM
EXECUTION

UNITS

FORWARDING_ALU

REGISTER FILE READ PORTS

REGISTER FILE

MEMORY
ALU

FETCH WRITEBACK

R0R0

R1

Rn

Rm

n REGISTERS

m THREADS

CONTROL
BRANCH DELAY
LOAD STALL

Fig. 2. CUSTARD micro-architecture showing threading, register file and forwarding
network parameterisations.

3 Multi-threaded Architecture

We generate instances of Customisable Multi-threaded processors using a pa-
rameterisable model. The parameterisable model, Figure 2 both instantiates a
synthesisable hardware description and configures our cycle-accurate simulator.

The base architecture is typical for a soft processor, with a fully bypassed
and interlocked 4-stage pipeline. CUSTARD is in fact a load/store RISC archi-
tecture supporting the full MIPS integer instruction set. In addition, CUSTARD
supports augmentation of the pipeline with custom instructions.

The detailed parameters are:

1. Multi-threading support

– Number of threads: a power of 2

– Threading type: Block (BMT) or Interleaved (IMT)

2. Custom instructions: Single-cycle, multi-cycle and pipelined

– Custom datapaths at the execution stage of the pipeline

– Custom memory blocks

3. Forwarding and interlock architecture

– Branch delay slot: with or without

– Load delay slot: with or without

– Forwarding: enable/disable each forwarding path

4. Register file

– Number of registers: a power of two

– Number of register file ports: larger or equal to two

– Bitwidth: 8,16,32



Disable Single/BMT IMT 2 threads IMT >= 4 threads

FORWARDING BRANCH X X
FORWARDING ALU X X
FORWARDING MEM X
BRANCH DELAY X* X X
LOAD INTERLOCK X* X X

Table 1. Summary of forwarding paths (as shown in Figure 2) and interlocks that
can be ‘optimised away’ for single threaded, block multi-threaded (BMT) and inter-
leaved multi-threaded (IMT) parameterisations. * Optimising away this element in this
configuration changes the compiler scheduler behaviour to prevent hazards.

Two types of multi-threading are supported, block (BMT) and interleaved
(IMT) multi-threading. Both types simultaneously maintain the context — the
state of registers, program counter etc. — of multiple independent threads. The
types of threading differ in the circumstances that context switches are triggered,
illustrated for two threads in Figure 3.

Block multi-threading (BMT), as shown in Figure 3(a), triggers a context
switch as a result of some run-time event in the currently active thread, for ex-
ample a cache miss, an explicit ‘yield’ of control or the start of some long latency
operation such as a custom instruction. When only a single thread is available,
the BMT processor behaves exactly as a conventional single threaded processor.
When multiple threads are available, any latency in the active thread is hidden
by a context switch. The context switch is triggered at the execution stage of the
pipeline, meaning that the last instruction fetched must be flushed and refilled
from the new active thread. This results in the stall shown in Figure 3(a).

Interleaved multi-threading (IMT), as shown in Figure 3(b), performs a
mandatory context switch every single cycle. This causes interleaved execution
of the available threads. IMT permits simplification of the processor pipeline
since, given sufficient threads, certain pipeline stages are guaranteed to con-
tain independent instructions. IMT thus removes pipeline hazards and permits
simplification of the forwarding and interlock network designed to mitigate these
hazards. Our processor can exploit this by selectively removing forwarding paths
to optimise the processor for a particular threading configuration.

Table 1 summarises customisation of the forwarding and interlock architec-
ture for each multi-threading configuration. The forwarding paths, BRANCH,
ALU and MEM are as illustrated in the pipeline diagram of Figure 2. The IMT
columns show how elements of the forwarding and interlock network can be re-
moved depending upon the number of available threads. For example, in the
case of two threads, the ALU forwarding logic can be removed. When two IMT
threads are available, any instruction entering the ALU stage of the pipeline is
independent of the instruction leaving the ALU stage. Removing interlocks in
certain situations (highlighted by *) constrains the ordering of the input instruc-
tions and so these parameters are made available to the compiler. Our compiler
is able to adapt the scheduling of instructions based on these parameters.

Multiple contexts are supported by multiple register files which are imple-
mented as dual-port RAM on the FPGA. Each register file access is indexed



�������	�	�	�	


�
�
�
�������

�������
�������

�
�
�


�
�
�


FETCH

EXECUTE

MEMORY

WRITE BACK

A

A

B

STALL

(a) Block Multi-Threading (BMT). A
context switch at the execution stage
causes a stall.

���������
���������
�������
�������

����������������

���������
���������
�������
�������

FETCH

EXECUTE

MEMORY

WRITE BACK

A

B

A

B

(b) Interleaved Multi-Threading
(IMT). A context switch occurs ev-
ery cycle.

Fig. 3. Interleaved (IMT) and Block (BMT) Multi-threading modes supported by CUS-
TARD. These examples show interleaving of two hardware threads A and B.

by the register number and also the id of the thread that generated the access.
Each register file is also parameterisable in terms of the number of ports and
the number of registers per thread. Increasing the number of register file ports
allows custom instructions to be selected by the compiler that take a greater
number of operands.

We use the Handel-C [6] hardware description language to implement our pa-
rameterisable processor. Our Handel-C implementation of CUSTARD provides
a framework for parameterisation of the processor together with a route to hard-
ware. While the generated processor might be suboptimal compared to a hand
optimised design, our interest is in rapid exploration of the design space and we
expect that high-level architectural trends will be faithful to optimised designs.

4 Software Infrastructure for Customisation

Our processor is supported by both an optimising ANSI C compiler and a cycle-
accurate simulator. The compiler automatically generates custom instructions
for CUSTARD from a C application. The simulator provides rapid feedback of
performance for an application running on an instance of the processor.

4.1 Optimising Compiler

Our compiler outputs MIPS integer instructions and custom instructions gener-
ated from the application. We generate custom instructions within the compiler
using our novel Similar Sub-Instructions technique. Similar Sub-Instructions is
outside the scope of this paper, we provide a brief introduction here but refer
interested readers to a technical report [7] for detail.



The principle of Similar Sub-Instructions is to find instruction datapaths
that can be re-used across similar pieces of code. We add these datapaths to our
parameterisable processor and then update the decoding logic to map the new
instructions to unused portions of the opcode space. The operation of Similar
Sub-Instructions can be summarised in four steps:

1. Program statements are re-written as a set of incidence matrices. An inci-
dence matrix is created for each binary commutative operator that appears
at least once in the program (e.g. add, multiply, XOR).

2. A heuristic is used to merge incidence matrix columns. Each column repre-
sents an input to the matrix: merging columns occurs when the input can
be computed using the same datapath.

3. A Breuer [5] factorisation process is used to select columns from each inci-
dence matrix to maximise a heuristic ‘figure of merit’. Custom instructions
are generated to implement a ‘sum’ of the selected columns using the appro-
priate operator.

4. A final ‘worthwhile check’ is used to reject instructions that do not meet
criteria for amount of computation performed within the instruction.

An incidence matrix is a representation for expressions of binary commuta-
tive operators. Each row of the matrix represents a ‘sum’ under a binary operator
such as XOR or addition. The incidence matrix allows us to exploit the com-
mutativity property when finding multiple opportunities to use an instruction.
The merging (2) and factoring (3) steps actually select the regions of the pro-
gram to be implemented as custom instructions. The ‘worthwhile check’ (4) stage
prevents the compiler generating custom instructions that already exist in the
processor basic instruction set.

4.2 Simulator

Our cycle-accurate simulator is based on the SimpleScalar[4] framework. The
simulator is configured directly from the processor hardware description and
simulates a parameterisable memory system. The simulator leverages the ability
of the Handel-C compiler to output a high-level C++ model of the hardware.
Conventionally, this model is compiled and executed on the host computer to
provide behavioural simulation output. Our simulation flow links this software
model to a processor simulation library that is, in turn linked to SimpleScalar.
The simulation library intercepts bus requests for instruction fetches and mem-
ory operations and passes these to SimpleScalar. SimpleScalar handles memory
system simulation and various housekeeping functions, such as binary loading.

5 Results

Our compilation and simulation framework is sufficiently complete to allow ap-
plication level benchmarks to be executed. To obtain indicative results from a



Blowfish Colourspace AES DCT Susan
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

is
ed

 c
lo

ck
 c

yc
le

s

single thread (no custom)
IMT4 (no custom)
BMT4 (no custom)
singlethread (custom)
IMT4 (custom)
BMT4 (custom)

Fig. 4. Normalised number of execution cycles required for six CUSTARD configura-
tions running five benchmarks.

compiler and processor very early in their development cycles, we select bench-
marks from the MiBench [9] suite that were sufficiently self-contained. We use
six benchmarks in total that cover two important application domains. From
image/video processing: colourspace conversion, laplace edge detection, SUSAN
edge detection and Discrete Cosine Transform (DCT). From cryptography: the
Advanced Encryption Standard (AES) and Blowfish. All benchmarks are com-
piled ‘out of the box’, i.e. without hand optimisation or tailoring for the archi-
tecture or compiler.

Briefly, the custom instructions identified by the compiler are: For Blowfish,
3 instructions that do byte selection and a table lookup. DCT, one table lookup
and multiply instruction. Colourspace, one table lookup instruction and a three
input, single output logical instruction. AES, one instruction that XOR’s four
table lookups. SUSAN, one table lookup instruction.

Figure 4, show the execution cycle counts for the five benchmarks (Blowfish,
Colourspace, AES, DCT and SUSAN) running on a CUSTARD processor im-
plemented on a Xilinx XC2V2000. Figure 5 shows the FPGA area utilisation
in Xilinx slices and Figure 6 shows the maximum clock rate, as reported by
the timing analyser. Each bar in the graph corresponds to a particular proces-
sor customisation. For each benchmark we present results for three threading
configurations: 1. Single threaded. 2. Block Multi-Threaded with four threads
(BMT4). 3. Interleaved Multi-Threaded with four threads (IMT4). We show re-
sults with, and without automatically generated custom instructions for that
benchmark.

1. The IMT4 and BMT4 configurations add only 28% and 40% area respec-
tively to the single threaded processor but allow four threads to execute
concurrently with no software overhead. In comparison, a multi-processor
system would require four single processors plus arbitration logic.



Blowfish Colourspace AES DCT Susan
0

500

1000

1500

2000

2500

3000

A
re

a/
X

C
2V

20
00

 S
lic

es

single thread (no custom)
IMT4 (no custom)
BMT4 (no custom)
single thread (custom)
IMT4 (custom)
BMT4 (custom)

Fig. 5. Required area in terms of XC2V2000 slices from a total of 21,504 for CUSTARD
configurations.

Blowfish Colourspace AES DCT Susan
0

5

10

15

20

25

30

35

M
ax

 c
lo

ck
 ra

te
/M

H
z

single thread (no custom)
IMT4 (no custom)
BMT4 (no custom)
single thread (custom)
IMT4 (custom)
BMT4 (custom)

Fig. 6. Maximum clock frequency for CUSTARD configurations as reported by Xilinx
timing analyser.

2. Custom instructions give a significant performance increase, an average of
72% with a small area overhead above the same configuration without custom
instructions, an average of only 3%. CUSTARD accelerates AES by 355%.

3. The optimisations to the forwarding network in the IMT processor with-
out custom instructions lead to a smaller area requirement and allow a
higher maximum clock rate compared to the equivalent BMT processors.
This trend is generally preserved across the custom instruction implementa-
tions, although there are some anomalies such as the AES and Blowfish IMT4
processors having a lower clock rate that the equivalent BMT4 processors.



6 Conclusion and Future work

We have presented CUSTARD, a customisable multi-threaded FPGA soft pro-
cessor. We present a methodology for customising CUSTARD processors to an
application and an implementation of the software infrastructure required to
support our methodology. To evaluate CUSTARD, we present performance and
area results for FPGA implementations of processors running important bench-
marks from media and cryptographic domains.

Possible directions for future work are investigating multi-processor configu-
rations of CUSTARD or combinations of customisable processors and hardware
accelerators. In addition, we hope to extend the compiler to identify larger pro-
gram segments as custom instructions to exploit greater parallelism at this level.

References

1. ARCtangent extensible processor. http://www.arccores.com.
2. Altera. Custom Instructions for the Nios Embedded Processor, September 2002.

Application Note 118.
3. Kubilay Atasu, Laura Pozzi, and Paolo Ienne. Automatic application-specific

instruction-set extensions under microarchitectural constraints. In Proc. DAC
2003, June 2003.

4. Todd M. Austin. A User’s and Hacker’s Guide to the SimpleScalar Architectural
Research Tool Set. http://www.simplescalar.com.

5. Melvin A. Breuer. Generation of optimal code for expressions via factorisation.
Communications of the ACM, 12(6):333–340, June 1969.

6. Handel-C language reference manual. http://www.celoxica.com, 2001. Version 2.1.
7. Robert Dimond. Custard: a custom threaded architecture and tools. Master’s

thesis, Imperial College, 2004. http://www.doc.ic.ac.uk/ rgd00/reports/rdtr1.pdf.
8. F. Sun et al. Custom-instruction synthesis for extensible-processor platforms.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
23(2):216–228, February 2004.

9. Matthew R. Guthaus et al. MiBench: A free, comercially representative embedded
benchmark suite. In Proc. IEEE 4th Annual Workshop on Workload Characteri-
sation, Austin, TX., December 2001.

10. META - RISC/DSP core with hardware multi-threading.
http://www.metagence.com.

11. Erik Norden. A multithreading extension for low-power, low-cost applications.
Embedded Processor Forum 2003, 2003.

12. S.P.Seng, W.Luk, and P.Y.K.Cheung. Runtime adaptive flexible instruction pro-
cessors. In Proc. Field-Programmable Logic and Applications, 2002.

13. http://www.tensilica.com.
14. Theo Ungerer, Borut Robic, and Jurij Silc. A survey of processors with explicit

multithreading. ACM Computing Surveys, 35(1):29–63, March 2003.
15. Panit Watcharawitch and Simon Moore. JMA: the java-multithreading architec-

ture for embedded processors. In International Conference on Computer Design
(ICCD). the IEEE Computer Society, September 2002.

16. Xilinx. MicroBlaze Hardware Reference Guide, March 2002.
http://www.xilinx.com.


