
Solving SAT with a Context-Switching Virtual Clause
Pipeline and an FPGA Embedded Processor

C.J. Tavares, C. Bungardean, G.M. Matos, and J.T. de Sousa

INESC-ID/IST-Technical University of Lisbon/Coreworks, Lda
R. Alves Redol, 9, 1000-029 Lisboa, Portugal1

jose.desousa@inesc-id.pt

Abstract. This paper proposes an architecture that combines a context-
switching virtual configware/software SAT solver with an embedded processor
to promote a tighter coupling between configware and software. The virtual
circuit is an arbitrarily large clause pipeline, partitioned into sections of a
number of stages (hardware pages), which can fit in the configware. The
hardware performs logical implications, grades and select decision variables.
The software monitors the data and takes care of the high-level algorithmic
flow. Experimental results show speed-ups that reach up to two orders of
magnitude in one case. Future improvements for addressing scalability and
performance issues are also discussed.

1 Introduction

Definitions and motivation. The satisfiability (SAT) problem — given a Boolean
formula F(x1,x2, ..., xn), find an assignment of binary values to (a subset of the)
variables, so that F is set to 1, or prove that no such assignment exists — is a central,
NP-complete computer science problem [1], with many applications in a variety of
fields. Typically F is expressed as a product-of-sums, which is also called conjunctive
normal form (CNF). The terminology is reviewed via an example: in the formula
F=(x1+x2)(¬ x1+ x2)(x1+¬x2), we have two variables, x1 and x2, and three clauses,
each with two literals; the literals in the third clause are x1 and ¬x2, where x1 is a non-
inverted literal and ¬x2 is an inverted literal. The assignment (x1=1, x2=1) is a
satisfying assignment, as it sets F=1. Hence F is satisfiable. The formula
G=(x1+x2)(¬ x1+ x2)(x1+¬x2)(¬x1+ ¬x2) is unsatisfiable. The number of variables in a
formula is denoted n and the number of clauses m. A k-clause is a clause that has k
literals. A k-SAT problem is one where clauses have at most k literals.

Previous work. In recent years, solving SAT using reconfigurable hardware
(configware) has become a major challenge for Reconfigurable Computing (RC)
experts. It is well known that, to become a generally accepted computing paradigm,
RC has to prove itself able to tackle important computer science problems such as

1 This work has been partially funded by FCT (Portugal), Project POSI/CHS/34562/2000.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 344−353, 2004.
 Springer-Verlag Berlin Heidelberg 2004

SAT, competing with advanced software SAT solvers such as GRASP [4], CHAFF
[5] and BERKMIN [6].

Several research groups have recently explored different approaches to implement
SAT on configurable hardware [8-17], as an alternative to software SAT solvers. The
satisfiers implement variations of the classical full search Davis -Putnam (DP) SAT,
algorithm [18]. More recently, incomplete, local search SAT algorithms like WSAT
or GSAT have also been contemplated with configware implementations [14,19]. An
interesting survey comparing the various approaches that have been proposed in the
literature is given in [20].

The most important problems addressed by the various proposals are the following:
(1) the method used to select the next decision variable and its value to be tried
[8,16,17]; (2) the compilation time spent in preparing the FPGA -based circuit to be
emulated [14,16,17]; (3) the ability to solve problems of an arbitrary large size
[12,16,17]; software-hardware partitioning [13,14,16,17].

Main contributions and organization of the paper. This paper presents a hard
evidence analysis of our approach to configware-software SAT solving. The main
contributions are the following:

1. Proposes the use of an embedded processor (Microblaze from Xilinx [21])
to create a tighter coupling between configware and software, eliminating
expensive communications between the two.

2. Proposes the use of a decision variable pipelined comp arator tree, to select
the next decision variables.

3. Publishes the first experimental results obtained with the actual (non
simulated) configware/software SAT solver system proposed in [16] and
refined in [22], which is also used to indirectly derive results for the
architecture proposed in this paper.

The remainder of this paper is organized as follows. Section 2 presents an overview of
the predecessor of the SAT solver system being proposed. Section 3 presents the new
system. Section 4 presents experimental results and their analyses. Finally, Section 5
outlines our conclusions and describes our current and future work.

2 Overview of the Predecessor System

Our current system evolved from a previous architecture already published in
[16,22,23], which is summarized in Figure 1. The SAT solver runs partly in software
and partly in configware. The software runs on a host computer and communicates
with the configware via the PCI bus. The configware resides in a board containing an
FPGA, a control CPLD and two single port RAMs, M1 and M2. After the configware
architecture is loaded in the FPGA, it may be used to process any SAT problem
instance, totally avoiding hardware instance-specific computation. The architecture
can be outlined as a virtual pipeline of clause data processors. Each clause data

345Solving SAT with a Context-Switching Virtual Clause Pipeline

processor represents a clause of the SAT instance. The virtual circuit is partitioned in
several hardware pages. Each page implements a pipeline section of D stages and M
clauses per stage. The board memories store the programming of the hardware pages
(context), which specify the clauses in each page and their data, and the latest state of
the SAT variables. Each memory position has N variables, and each variable is
represented by a K-bit word (K is even), having 2 fields, P0 and P1, of K/2 bits. L
memory addresses are used to store a total of LN variables. Therefore, the configware
architecture is perfectly characterized by the parameters (D,K,L,M,N). The processing
consists of streaming the variables through the pipeline, back and forth between M1
and M2.

Fig. 1. High-level view of the previous system.

The algorithm starts when the software reads the SAT problem instance from a file in
the CNF format, and maps it to the configware structure as a 3-SAT problem. If the
original problem is k-SAT (k>3), it is converted into a 3-SAT problem. The whole
formula compilation process runs in polynomial time, in a matter of seconds, much
faster than any FPGA compilation flow. If the resulting circuit model is larger than
the available configware capacity, it is partitioned in P virtual hardware pages able to
fit in the configware. Thus the number of stages of the virtual clause pipeline is PD.

After the hardware pages are generated, the processing of variables in the clause
pipeline can start. While moving the variables through the clause pipeline back and
forth between M1 and M2, the values of their fields P0 and P1 are updated, until they
reflect the number of clauses that would be satisfied if the variable had the value ‘0’
or ‘1’, respectively. This is because each field Pb is incremented whenever the
variable is processed by one of its unresolved clauses that is satisfied for value b. The
incrementing saturates when Pb reaches the value

....

Var
N-1

Var
N-2

Var
0

.

.

.

....

Clause M-1

Clause M-2

Clause 0

InitStage

M1 M2Var
N-1

Var
N-2

Var
0

.

.

.

....

Clause M-1

Clause M-2

Clause 0

Pipeline

Stage 1 Stage D
F

la
gs

Control

CPLD

Host PC

P
C

I B
us

StatusControl
FPGA

346 C.J. Tavares et al.

22| 2/
_ −= K

SCOREMAXbP

The maximum possible value, Pb|ASSIGNED, is reserved to represent an implied or
assigned variable:

12| 2/ −= K
ASSIGNEDbP

Our SAT solver implements a variation of the DP algorithm, and can be thought of as
having three engines: the deduction, diagnosis and decision engines. The deduction
engine assigns variables in unit clauses (computes logical implications) and grades
unassigned variables according to the heuristic described above. When one or more
clauses are falsified, the deduction engine reports the existence of conflicting
assignments (conflicts). The diagnosis engine checks if a solution has been found, or
if the last decision variable assignment has resulted in a conflict. If a conflict
happened, the decision engine returns to the last decision variable (chronological
backtracking), and sets it to its untried value. If no conflict is found the decision
engine chooses the variable with the best heuristic score to be the next decision
variable. If after a conflict there is no backtrack point then the formula is
unsatisfiable. A flowchart summarizing the operation of the system is shown in Figure
2, where the filled areas represent tasks implemented in configware and the unfilled
areas represent tasks implemented in software.

The operation of the virtual hardware scheme is as follows. Suppose the variables rest
initially in memory M1. The first virtual hardware page is programmed, and all
variables are streamed from M1, processed through the virtual hardware page, and
stored in M2. If no conflict is detected, the next hardware page is loaded, and the
processing of variables continues now from M2 back to M1. This process goes on for
all virtual hardware pages sequentially, so that all sections of the virtual clause
pipeline get to process all variables. Running all hardware pages on all variables is
denoted a pass. During a pass new implications are generated and new clauses are
satisfied - these are called clause events. For as long as new clause events are
generated in a pass, another one is started, until no more events arise (this situation is
denoted stasis) or a conflict is found. For the variables not yet assigned, P0 and P1 are
recomputed during each pass so that their values are up to date when stasis is reached.
After stasis, the configware informs the software on the latest location of the
variables, either memory block M1 or M2. Then the software runs the diagnosis and
decision engines.

3 The New System

After implementing and evaluating the system described in the previous section, we
were not surprised to find out that its performance was far from what the simulation
results in [23] had predicted — this is usually the case with a first prototype. Hence,
we proceeded to analyse the causes of the discrepancies between simulated and actual
results, and two major causes have been identified:

347Solving SAT with a Context-Switching Virtual Clause Pipeline

1. The communication between software and hardware was slow due to the
latency of the PCI bus.

2. The software processing time was high, since the decision engine required
all variables to be read, to find the one with the highest heuristic score.

Deduction

Start

Conflict?
Decision

SAT

Decisions?

Diagnosis

Y

N

N

Conflict? Backtrack point UNSAT

Y

Y

N

N

Y

N

Loaded
all hardware

pages?

Stasis?

Y

YN

Fig. 2. Configware/Software SAT Solver Algorithm

To address these problems we came up with the improved architecture depicted in
Figure 3, whose main new features are:

1. An embedded processor, MicroBlaze (MB) from Xilinx [21], was introduced
to create a tight coupling between software and configware.

2. Comparator stages were introduced in the pipeline to select the variable with
the best heuristic score, relieving the software of this burden.

MB uses the On-chip Peripheral Bus (OPB, inherited from IBM’s CoreConnect
infrastructure) to communicate with the clause pipeline, and to access the memories
via the control CPLD. This way, MB and the clause pipeline share the same memory,
and there is no need to move the variables elsewhere. In the predecessor system,
where the host PC was running the software, all variables were transferred via DMA
to the PC’s central memory to be processed there, and then transferred back to the
board memory. This had to be done for every decision variable, which, due to the
high latency of the PCI bus, was still less expensive than accessing the variables one
by one from the board memory.

To select the next decision variable a tree of variable comparators has been
introduced. To preserve the frequency of operation, each level of the tree is placed in

348 C.J. Tavares et al.

a pipeline stage. The number of levels (height of the tree) is log2(2N), which creates a
constraint for the minimum pipeline depth D. However, since N is not a large number,
the tree is quite short anyway, and this new constraint is irrelevant.

....

Var
N-1

Var
N-2

Var
0

.

.

.

....

Clause M-1

Clause M-2

Clause 0

InitStage

M1 M2Var
N-1

Var
N-2

Var
0

.

.

.

....

Clause M-1

Clause M-2

Clause 0

Pipeline

Stage 1 Stage D

F
la

gs

Control

CPLD

Host PC

MicroBlaze

Status

Control

OPB bus

PCI bus

P
C

I b
us

FPGA

Comparator Comparator

D
ec

is
io

n

Fig. 3. High-level view of the proposed system.

The compilation of the SAT problem instance is still performed on the host PC for
convenience and speed, since it is only done once as a pre-process step. Work to
incorporate the decision variable comparator tree and the Xilinx’s MicroBlaze soft
processor is currently under way.

4 Results

All experimental results have been obtained using the system described in Section 2,
whose prototype has been finis hed recently. The results for the proposed architecture
have been derived by carefully measuring the DMA communication time and the
elapsed time of the decision variable selection software routine, and subtracting these
two terms from the total elapsed time obtained with the predecessor system of Section
2. The results obtained in this way are valid for an FPGA 30% larger, which is the
hardware overhead estimated for the added variable comparator tree and the
MicroBlaze embedded processor. This is no problem since FPGA devices much
larger than the ones used in our experiments are commercially available.

349Solving SAT with a Context-Switching Virtual Clause Pipeline

Experimental setup. The software runs on a Linux Suse 8.0 host PC with a Pentium 2
processor, at 300.699 MHz and 192 Mbytes of memory. The configware architecture
is implemented in a Celoxica’s RC1000 board [2] with PCI interface, featuring a
XCV2000E device with 4 SRAM banks of 2 Mbytes and 32 bits wide. The memory
blocks M1 and M2 are implemented using 2 SRAM banks each, so the variables are
accessed as 64-bit words. The clause pipeline programming data (hardware pages or
contexts) are stored as 128-bit words in the 4 SRAM banks simultaneously. The
configware architecture is characterized by the parameters D=17, K=8, L=1024, M=4,
N=7, as described in Section 2 and optimized according to [22]. Thus the system
implemented can process SAT formulae of complexity up to 7168 variables 165036
clauses. The hardware occupies 96% of the FPGA area, so it has a complexity of
1.92M system gates and works at 40 MHz.

 A0 and A1 GRASP

Example Variables Clauses Decisions Variables Clauses Decisions

aim-50-1_6-no-2 50 80 10141 50 80 13390

aim-50-1_6-no-3 50 80 37363 50 80 100471
aim-50-1_6-no-4 50 80 2883 50 80 2332
aim-50-2_0-yes1-3 50 100 2022 50 100 2170
aim-50-2_0-yes1-4 50 100 135 50 100 6164
aim-100-1_6-yes1-1 100 160 1287235 100 160 14384
aim-100-1_6-yes1-2 100 160 2119121 100 160 3916671
dubois20 60 160 25165823 60 160 12582911
ssa432_3 561 1405 3911 435 1027 3115
hole6 63 196 5883 42 133 3245
hole7 96 324 49405 56 204 21420
hole8 126 459 674595 72 297 378343

hole9 150 595 7520791 90 415 4912514

Table 1. Benchmark SAT instances used.

Experimental results. Our results have been obtained using a subset of the well-
known benchmark set from DIMACS [7]. The results are compared to those obtained
with GRASP, a well-known and publicly available SAT solver. Its options have been
set to implement the same DP search algorithm we use in our system. Our k-SAT to
3-SAT decomposition technique augments the size of the formula, which may alter
the number of decisions comparatively to using the original formula; GRASP is
always run on the original formula. Table 1 shows the number of variables, clauses
and decisions when running our algorithms, denoted A0 and A1, and GRASP. Note
that a larger formula does not necessarily mean more decisions, since a different
direction of the search may change the number of decisions dramatically. In Table 2,
execution time results are presented. TGRASP is the total time taken by GRASP for
each instance. TA0 is the total time taken by our predecessor system, and TA1 is the

350 C.J. Tavares et al.

time taken by the system proposed in this paper. SUA1 is the overall speed-up, and
SUA1PD is the speed-up per decision.

These results show that the predecessor system (algorithm A0) can not obtain any
speed-ups compared to GRASP (see columns TGRASP and TA0), while the proposed
system (algorithm A1) can in fact obtain an acceleration against GRASP (see columns
TGRASP, TA1 and SUA1). For the aim-50-2_0-yes1-4 example the overall speed-up
against GRASP is almost 250, which is a 2 orders of magnitude acceleration.
However, comparing the execution times without taking in consideration the number
of decisions shown in Table 1 is imprecise. In fact, the aim-50-2_0-yes1-4 benchmark
has a significantly lower number of decisions (135) when using the 3-SAT formula
(A0 and A1) than when using the original formula (6164 decisions with GRASP).
Therefore, a more fair comparis on is to use the execution time per decision rather than
the total elapsed time. These results are shown in column SUA1PD, which shows
more modest speed-ups reaching one order of magnitude. On the other hand, many
more examples show speed-ups greater than one, when using the SUA1PD metric.

EXAMPLE TGRASP TA0 TA1 SUA1 SUA1PD

aim-50-1_6-no-2 1,830 3,461 0,340 5,382 4,076
aim-50-1_6-no-3 10,510 14,165 0,874 12,025 4,472
aim-50-1_6-no-4 0,250 1,264 0,248 1,008 1,246
aim-50-2_0-yes1-3 0,350 0,847 0,030 11,667 10,871
aim-50-2_0-yes1-4 1,000 0,220 0,004 249,988 5,475
aim-100-1_6-yes1-1 2,600 787,969 85,081 0,031 2,735
aim-100-1_6-yes1-2 614,310 1312,940 164,268 3,740 2,023
dubois20.cnf 1040,400 6751,870 561,789 1,852 3,704
ssa432_3.cnf 1,300 39,810 10,817 0,120 0,151
hole6.cnf 0,260 2,325 0,372 0,699 1,267
hole7.cnf 4,340 24,830 6,003 0,723 1,668

hole8.cnf 56,450 408,494 136,194 0,414 0,739

hole9.cnf 825,120 6225,630 1932,090 0,427 0,654

Table 2. Execution time results for GRASP, A0 and A1.

Comparing Tables 1 and 2 we can observe that the speed-ups drop with the size of the
instance, reflected in the size of the virtual clause pipeline. The explanation for this is
the still immature virtual hardware scheme that has been implemented. In our current
approach for every new variable assignment all clauses are evaluated, no matter if the
new variables assigned are present in the evaluated clauses or not. This is inefficient
and makes the assignment evaluation time O(mn). Ideally the number of evaluated
hardware pages should depend only on their having clauses to update with new
assignments. Also, all variables are updated in the process, when there is only need to
update variables in clauses that have been updated themselves. We have current plans
to optimize this aspect, which will considerably boost the performance and prevent
degradation when the problem scales up.

351Solving SAT with a Context-Switching Virtual Clause Pipeline

5 Conclusion

In this paper we have proposed a novel architecture of a SAT solver that combines a
configurable hardware device with a small size embedded processor. The configware
device implements a section of a virtual clause pipeline circuit (hardware page). The
large virtual circuit embodies the SAT instance to be solved, and is operated by
context -switching, where each context is a hardware page and its data.

The configware computes logical implications, grades decision variables using a
heuristic score, and selects the next decision variable based on this figure. The
software manages the search process (decision tree).

Experimental results have been obtained using a host PC to implement the software,
and an FPGA to implement the configware. The performance of the proposed
architecture has been derived by subtracting the PCI communication time and the
elapsed time of the decision variable selection routine from the total elapsed. Work to
incorporate the MicroBlaze embedded processor and the proposed comparator tree to
select the next decision variable is under way. Our results show that speed-ups up to 2
orders of magnitude can be obtained with the proposed system.

Future work. We now have an architecture flexible enough to implement
sophisticated algorithmic improvements, such as non-chronological backtrack and
clause addition, like in modern software SAT solvers.

References

1. J. Gu, P. W. Purdom, J. Franco, and B. W. Wah, “Algorithms for the
Satisfiability (SAT) Problem: A Survey”, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 35, pp. 19-151, 1997.

2. http://www.celoxica.com: RC1000 configware platform.
3. M. R. Garey and D. S. Johnson, “Computers and Intractability: A Guide to

the Theory of NP Completeness”, W.H. Freeman and Company, San
Francisco, 1979.

4. J.M. Silva and K. A. Sakallah, “GRASP: a search algorithm for propositional
satisfiability”, IEEE Trans. Computers, vol. 48, n. 5, pp. 506-521, 1999.

5. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an Efficient SAT Solver”, in Proc. 38th Design Automation
Conference, 2001, pp. 530-535.

6. E. Goldberg and Y. Novikov, “BerkMin: a Fast and Robust SAT-solver”, in
Proc. Design, Automation and Test in Europe Conference, 2002, pp. 142-
149.

7. http://www.intellektik.informatik.tudarmstadt.de/SATLIB/benchm.html:
DIMACS challenge benchmarks.

8. T. Suyama, M. Yokoo, H. Sawada, and A. Nagoya, “Solving Satisfiability
Problems Using Reconfigurable Computing”, IEEE Trans. on VLSI
Systems, vol. 9, no. 1, pp. 109-116, 2001.

352 C.J. Tavares et al.

9. P. Zhong, M. Martonosi, P. Ashar, and S. Malik, “Using Configurable
Computing to Accelerate Boolean Satisfiability”, IEEE Trans. CAD of
Integrated Circuits and Systems, vol.18, n. 6, pp. 861-868, 1999.

10. M. Platzner, “Reconfigurable accelerators for combinatorial problems”,
IEEE Computer, Apr. 2000, pp. 58-60.

11. M. Abramovici and D. Saab, “Satisfiability on Reconfigurable Hardware”, in
Proc. 7th Int. Workshop on Field-Programmable Logic and Applications,
1997, pp. 448-456.

12. M. Abramovici and J. T. de Sousa, “A SAT solver using reconfigurable
hardware and virtual logic”, Journal of Automated Reasoning, vol. 24, n. 1-
2, pp. 5-36, 2000.

13. Dandalis and V. K. Prasanna, “Run-time performance optimization of an
FPGA-based deduction engine for SAT solvers”, ACM Trans. on Design
Automation of Electronic Systems, vol. 7, no. 4, pp. 547-562, Oct. 2002.

14. P. H. W. Leong, C. W. Sham, W. C. Wong, H. Y. Wong, W. S. Yuen, and
M. P. Leong, “A Bitstream Reconfigurable FPGA Implementation of the
WSAT algorithm”, IEEE Trans. On VLSI Systems, vol. 9, no. 1, pp. 197-
201, 2001.

15. M. Boyd and T. Larrabee, “ELVIS – a scalable, loadable custom
programmable logic device for solving Boolean satisfiability problems”, in
Proc. 8th IEEE Int. Symp. on Field-Programmable Custom Computing
Machines, 2000.

16. J. de Sousa, J. P. Marques-Silva, and M. Abramovici, “A
configware/software approach to SAT solving”, in Proc. 9th IEEE Int. Symp.
on Field-Programmable Custom Computing Machines, 2001.

17. Skliarova and A. B. Ferrari, “A SAT Solver Using Software and
Reconfigurable Hardware”, in Proc. the Design, Automation and Test in
Europe Conference, 2002, p. 1094.

18. M. Davis and H. Putnam, “A Computing Procedure for Quantication
Theory” ACM journal, vol. 7, 1960, pp. 201-215".

19. R. H. C. Yap, S. Z. Q. Wang, and M. J. Henz, “Hardware Implementations
of Real-Time Reconfigurable WSAT Variants”, in Proc. 13th Int. Conf. on
Field-Programmable Logic and Applications, Lecture Notes in Computer
Science, vol. 2778, Springer, 2003. pp. 488-496.

20. Skliarova and A. B. Ferrari, “”, in Proc. 13th Int. Conf. on Field-
Programmable Logic and Applications, Lecture Notes in Computer Science,
vol. 2778, Springer, 2003. pp. 468-477.

21. http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=microblaze:
MicroBlaze Soft Processor.

22. N. A. Reis and J. T. de Sousa, “On Implementing a Configware/Software
SAT Solver”, in Proc. 10th IEEE Int. Symp. Field-Programmable Custom
Computing Machines, 2002, pp. 282-283.

23. R. C. Ripado and J. T. de Sousa, “A Simulation Tool for a Pipelined SAT
Solver”, in Proc. XVI Conf. on Design of Circuits and Integrated Systems,
Nov. 2001, pp. 498-503.

353Solving SAT with a Context-Switching Virtual Clause Pipeline

	Introduction
	Overview of the Predecessor System
	The New System
	Results
	Conclusion

