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Abstract

This paper presents a method that offers a uniform treat-
ment for bit-width optimisation of both fixed-point and
floating-point designs. Our work utilises automatic differ-
entiation to compute the sensitivities of outputs to the bit-
width of the various operands in the design. This sensitivity
analysis enables us to explore and compare fixed-point and
floating-point implementation for a particular design. As
a result we can automate the selection of the optimal num-
ber representation for each variable in a design to optimize
area and performance. We implement our method in the
BitSize tool targeting reconfigurable architectures, which
takes user-defined constraints to direct the optimisation pro-
cedure. We illustrate our approach using applications such
as ray-tracing and function approximation.

1 Introduction

One of the main challenges facing a hardware designer is
to determine the appropriate bit-widths for the components
in a design that meet system requirements. The increase in
design complexity, enabled by Moore’s Law, renders hand
optimisation of bit-widths unattractive except for small de-
signs. An automated method which can perform bit-width
optimisation is vital to accelerate the hardware design cycle.

This paper describes a method capable of deducing oper-
ator bit-widths automatically for a given software descrip-
tion of an algorithm. The method can cover both floating-
point and fixed-point hardware implementations. We have
implemented this method in a tool called BitSize.

The choice of fixed-point or floating-point representa-
tions is largely driven by the dynamic range required by an
application. Our tool provides a unique facility for system
designers to explore the trade-offs between various param-
eters, such as accuracy, dynamic range, area and speed.

While our approach is particularly relevant to recon-
figurable designs which can be produced directly by ap-
plication developers, it can also be used in optimising
application-specific integrated circuits.

The key elements of our work include:

• a framework that offers a unified treatment of bit-width
analysis for different number representations;

• the use of this framework in determining bit-widths for
fixed-point and floating-point designs;

• the implementation of this framework in the BitSize
tool that targets reconfigurable devices such as FPGAs
(Field-Programmable Gate Arrays).

• the evaluation of our approach using four case studies:
ray-tracing, function approximation, Finite-Impulse
Response (FIR) filtering and Discrete Cosine Trans-
form (DCT).

Note that while our discussion in this paper is focused on
area reduction, recent work [6] has demonstrated that bit-
width optimisation can also result in significant reduction
in power consumption.

The rest of the paper is organised as follows. Section 2
presents an overview and background of our proposed tech-
nique. Section 3 discusses the trade-offs between floating-
point and fixed-point arithmetic in hardware. Section 4 ex-
plains the mathematical reasoning behind the use of au-
tomatic differentiation for bit-width analysis. Section 5
presents the method employed to calculate the optimal bit-
widths for both floating-point and fixed-point designs, along
with a discussion of the BitSize algorithm which we use to
select between the two number representations. Section 6
describes the implementation of our tool, BitSize. Section 7
presents four case studies: a ray-tracer, a function approxi-
mator, a discrete cosine transform circuit, and an FIR filter.
Section 8 contains concluding remarks.

2 Overview and background

This section contains three parts. Section 2.1 provides an
overview of our approach, Section 2.2 considers the trade-
offs between fixed-point and floating-point designs and Sec-
tion 2.3 presents the theoretical background for the use of
Automatic Differentiation for bit-width analysis.
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2.1 Overview

Figure 1 illustrates the design flow of our method. The
main part of this method is performed by our tool BitSize,
the input to which is either a C/C++ design description or a
Xilinx System Generator [21] design description. The out-
put of the tool is an annotated data flow graph which can
then be used to produce either fixed-point or floating-point
implementations.
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Figure 1. The design flow of our method.

BitSize also supports a verification path which is used
to check that the proposed design meets user specified er-
ror requirements. Fixed-point designs can be implemented
using the Xilinx System Generator hardware design suite,
and the simulation facilities provided by Matlab can be used
for design verification. Floating-point designs can be im-
plemented with the aid of a parameterisable floating-point
hardware library. We verify floating-point designs in soft-
ware using a parameterisable floating-point simulation li-
brary. Once the designs pass the verification stage, the hard-
ware description is synthesised, placed and routed to pro-
duce an FPGA configuration bit-stream.

The following describes our approach in more detail,
and compares it to other methods. We split the problem
of minimising the design bit-widths into two parts: range
analysis and precision analysis. Range analysis has re-
ceived much attention within recent integer bit-width anal-

ysis work [4], [17], [18], [20]. Precision analysis, on the
other hand, involves analysing the “sensitivity” of the out-
put from a computation to slight changes in the inputs; more
specifically, the sensitivity of an output to the computa-
tional precision within an arithmetic unit. So far research
into precision analysis has mainly focused on fixed-point
implementations [5], [6], [7], [8], [12], [19].

The most straight-forward bit-width optimisation
method is to try out various bit-widths and observe the out-
put for each design [1]. This technique, however, involves
an enormous search space. Another method for the calcu-
lation of bit-widths is the use of automatic differentiation
[2]. In [2] only floating-point designs are considered, while
in [10] only numerical software is considered. This paper
proposes a technique which can target both floating-point
and fixed-point hardware implementations.

In addition to sensitivity, we also consider the dynamic
range of the operations, which is used to determine the in-
teger bit-widths for fixed-point operations and the exponent
bit-widths for floating-point operations.

2.2 Fixed-point versus floating-point designs

Hardware arithmetic has traditionally focused on either
integer or fixed-point arithmetic representations. Due to the
significant increase in resources in the latest FPGAs, it is
now feasible to support more complex arithmetic formats
such as floating-point [3], [11] and logarithmic representa-
tions [13] in hardware. It is therefore attractive to have a
bit-width optimisation tool that can support various arith-
metic formats. This paper describes the theory and practice
of such a tool that can cover both fixed-point and floating-
point designs.

Floating-point implementations are efficient when a
large dynamic range is required, which would otherwise
involve a fixed-point representation with large bit-widths.
Many applications currently being developed for FPGAs re-
quire the support for large dynamic ranges.

The software floating-point standard most commonly
implemented today is the IEEE 754 floating-point standard.
This standard specifies several floating-point formats, the
most common being the single and double precision for-
mats. The former allocates 23 bits for the mantissa and 8
bits for the exponent, whilst the latter allocates 53 bits for
the mantissa and 10 bits for the exponent.

Fixed-point arithmetic is the more straight-forward of
the two number representations. In fixed-point representa-
tion, an implicit binary point is used to separate the integer
part and the fractional part within a single data word. Fixed-
point number representation facilitates implementation of
most of the calculations as integer arithmetic, as little pre-
or post-normalisation is required.

The pre- and post-normalisation steps used in floating-



point arithmetic require the use of priority encoders and
variable shifters. These components are expensive in terms
of area usage and power consumption, and tend to have
large combinational delays. Hence when we considering
identical range and precision, floating-point addition is al-
ways more costly than fixed-point addition in terms of
speed, area and power consumption. The dynamic range of
floating-point multipliers allows us to keep the area close to
a constant when increasing the dynamic range of the data.
This is not the case with fixed-point multipliers where an
increase in dynamic range range requires a large increase in
area.

We shall illustrate in Section 7 how dynamic range can
be used to select the number representation for a given ap-
plication.

Our method exploits the opportunity to use customised
arithmetic formats, where we can have arbitrary integer and
fractional widths for fixed-point designs and arbitrary man-
tissa and exponent widths for floating-point designs. Our
tool performs analysis for both fixed-point and floating-
point designs, and then recommends the best format to use.
It is based on a simulation technique that requires a sample
data set as an input to perform the analysis.

2.3 Automatic differentiation framework

Automatic differentiation [10] is a method developed by
the applied mathematics community for the differentiation
of algorithms. The main advantage that automatic differen-
tiation provides is the ability to calculate the differentials as
a side effect of the execution of the user algorithm, with few
changes to the algorithm itself.

Automatic differentiation offers us a faster alternative
than simulation-only methods for bit-width analysis. Only
a single iteration is required to calculate the maximum error
tolerance at a node in the data flow graph for a given output
error specification, thereby significantly reducing the design
search space.

This section introduces an automatic differentiation
framework that provides a unified treatment of bit-width
analysis applicable to different number representations.

In Figure 2, we show a simple example of the opera-
tion of automatic differentiation on the data flow graph of a
computational schema for the functionf = x1 × x2 + x3.
When the data flow graph is being evaluated, at each oper-
ator node automatic differentiation calculates the gradients
with respect to the inputs to that node and then annotates
the respective edges. From this illustration we derive def-
inition 1 for the sensitivity relationship between the output
and the input.

Definition 1 (Sensitivity) The sensitivity (s) of an out-
put (y) is a function of the input (x), such that a
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Figure 2. Data flow graph (a) shows the computation of the
function f = (x1 × x2) + x3, while data flow graph (b)
shows the same function where the edges are annotated with
the gradients. Graph (c) highlights the relationship between
the gradient and the input error inx, ∆x.

change in the input causes a change in the output :
∆y = s(∆x) ' f ′(x)∆x

The derivation of the relationship mentioned in defini-
tion 1, between an output and a single input is demonstrated
by the set of equations 1 - 4. It is also possible to extend def-
inition 1 to the case where there is more than one input to
the function node.

y = f(x) (1)

y′ = f ′(x) =
dy

dx
(2)

dy = f ′(x)dx (3)

∆y ' f ′(x)∆x (4)

Next we extend our definition of sensitivity, by consider-
ing a node withn inputsU0 · · ·Un, and outputy. The inputs
are related to the output by the differentiable functionfj as
shown in equation 5.



Y = fj(U0, U1, · · · , Un) (5)

Let ∆Ui be the error introduced whenUi is represented
in finite precision.∆Ui is also known as the absolute error
and can be expressed in equation 6.

∆Ui ≤ |Ūi − Ui| (6)

whereŪi is the value ofUi in finite precision.
Since the use of infinite precision arithmetic for our anal-

ysis is cumbersome, we representUi in IEEE double preci-
sion floating-point format. We follow this method on the
basis that most hardware designs are derived from software
designs using IEEE floating-point format. However, our ap-
proach can easily be adapted to other approximations of in-
finite precision arithmetic, such as the exact computation
format [22].

Let ∆Y be the effect onY in response to the changes in
Ui, it can be expressed using the Taylorian approximation
shown in equation (7):

∆Y ≥ ∆U1
dY

dU1
+ · · ·+ ∆Un

dY

dUn
(7)

wheredY/dUi is the sensitivity or gradient ofY , to changes
in Ui. The higher order terms in the Taylorian approxima-
tion are ignored, under the assumption that the contribution
of their values is negligible. Automatic differentiation pro-
vides us with the values of the gradients.

This approximation holds when∆Ui << Ui. In a typ-
ical application of our method the user specifies the maxi-
mum tolerable error at the output either as an absolute error
∆Y or as a relative errorΨY .

We use a backward propagation method to calculate the
values of∆Ui while ensuring that the inequality in equa-
tion (7) is satisfied.

In equation (8) we express∆Ui in terms of the bit-width
of the node, whereEflt andEfix are the error functions
which relate the mantissa and fractional bit-widths to the
computational error at the node.

∆Ui =

 Errflt(man bw) if Type = Float

Errfix(frac bw) if Type = Fixed
(8)

where Type refers to the arithmetic format selected for the
design under analysis, whileman bw represents the man-
tissa bit-width for floating-point andfrac bw represents the
fractional bit-width for fixed-point. The precision analy-
sis problem is now simplified to finding the values of∆Ui

while satisfying the condition of equation (7). This is in
contrast to the large number of iterations that we would re-
quire if a naive simulation based method is employed.

3 From error to bit-width calculation and
design selection

This section shows how the framework in the preceding
section can be used in calculating bit-widths for two number
representations. Our analysis treats the problems of preci-
sion and range analysis separately. In the case of floating-
point the precision depends on the mantissa bit-width, while
the range depends on the exponent bit-width. In the case
of fixed-point the range depends on the integer bit-width,
while the precision depends on the fractional bit-width.

Targeting floating-point designs

Let Ui represent a floating-point number
(−1)S ·M · 2E , where S is the sign bit, M is the
mantissa with a bit-width ofm bits, andE is the exponent
with a bit-width ofe bits.

S a0 a1 a2 · · · am−1 be−1 · · · b2 b1 b0

The value of the mantissaM is expressed as:

M =
m−1∑
i=0

ai2−i (9)

whereai ∈ {0, 1}.
From equations (8) and (9), it is possible to relate the

bit-width m of the mantissa of the node to the error when
representing the mantissa by a finite bit-widthErrflt, as
follows:

Errflt(m) =


2−m × 2E if round-to-nearest

2−(m−1) × 2E if truncation
(10)

whereE is the value of the exponent at the node. In ad-
dition to the dependence on the bit-width of the mantissa
m, Errflt also depends on the rounding mode used when
converting the floating-point value to finite precision value.
A rounding mode, such as round-to-nearest, while giving
better error bounds than truncation would require additional
hardware to implement. Truncation would require one extra
bit to provide the same error bound as round-to-nearest.

We select truncation for our hardware implementations
since the area cost of having an extra bit in the bit-width is
less than the cost of implementing round-to-nearest. After
calculating the∆Ui values, from equation (10) we derive
equation (11) for calculating the mantissa bit-widthm:

m ≥ EUi
− dlog2(|∆Ui|)e+ 1 (11)

whereEUi
is the value of the exponent ofUi, which can be

found byEUi
= dlog2(|Ui|)e.



The dynamic range of the operation is given by
|max(Ui)−min(Ui)|. The exponent bit-width ofUi, e can
be calculated as follows. The exponent bit-width is related
to the dynamic range of the number:

e ≥ dlog2(|max(EUi
)−min(EUi

)|)e (12)

Targeting fixed-point designs

Now we consider the case whenUi is represented as a
fixed-point number, with an integer partI which isk bits in
length, and a fraction partF which isl bits in length.

pk−1 · · · p2 p1 p0 q0 q1 q2 · · · ql−1

The integer bit-width, which represents the dynamic
range of the number, is calculated according to equa-
tion (13):

k ≥ dlog2(|max(Ui)−min(Ui)|)e (13)

As in the case of floating-point, we introduce an error
function to reflect representing the fractional part of the
fixed-point value by a finite bit-width. This error function
represented byErrfix in equation (8), can be related to the
fractional bit-widthl as follows:

Errfix(l) =


2−l if round-to-nearest

2−(l−1) if truncation
(14)

Once again we select truncation as opposed to rounding
for the hardware implementation, based on the same justifi-
cation we presented in the floating-point case.

From equation (14) and the value of∆Ui calculated as
before we derive equation (15) to express the bit-width:

l ≥ dlog2(|∆Ui|)e+ 1 (15)

When a number is represented in fixed-point format, the
bit-width of the integer part should be large enough to cover
the dynamic range. As an example, a dynamic range of106

requires 20 bits in the integer part, while the same dynamic
range requires only 5 bits in the exponent of a floating-point
number.

Design selection

Next, we present our BitSize algorithm for reducing
the bit-widths while satisfying user-specified design con-
straints, the operation of the algorithm is as shown in
Figure 3.

Our bit-width optimisation technique is guided by the
user-specified design constraints. These design constraints

can include, in addition to the maximum permitted output
error specification, the required dynamic range, the maxi-
mum area usage and the maximum combinational delay of
the design.
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Figure 3. The BitSize algorithm flow.

The user-specified design constraints and the un-
optimised design form the inputs to the BitSize algorithm.
The algorithm gives priority to the maximum permitted out-
put error in the design constraints over the other design con-
straints such as area, speed or power consumption. The
main analysis phase of the algorithm consists of two paral-
lel sub-analysis phases: (1) range analysis and (2) precision
analysis. The range analysis observes the values passing
through the nodes of the data flow graph of the un-optimised
design and determines the dynamic range at each. This
would be translated as the integer bit-width in fixed-point
arithmetic from equation (13), or as the exponent bit-width
in floating-point arithmetic from equation (12).

The precision analysis sub-phase uses automatic differ-
entiation to determine the maximum error tolerance at each
node, for a user-specified output error specification. Again
depending on whether fixed-point or floating-point is se-
lected for the node under analysis, this is translated to be-
come the fraction bit-width from equation (15) or as the



mantissa bit-width from equation (11).
The area estimator calculates the area usage of the bit-

width optimised design, based on an area model related to
the target technology. This area model describes the area
usage in terms of the bit-width of the operator for all the op-
erators available in our implementation libraries. The area
model does not consider the routing or input/output over-
heads in the implemented design.The area estimator obtains
the total area usage of the design from of equations (16)
and (17), where the area is modelled as a function of the op-
erator nodes in the design, their operator types, arithmetic
types and bit-width.

TotalArea =
N∑
i

Ai (16)

whereAi the area of an individual node.

Ai =

 Gflt(Wexp,Wman, OP ) if Type = Float

Gfix(Wint,Wfrac, OP ) if Type = Fixed
(17)

whereOP ∈ {+,−,×, /} and Type is the arithmetic type
selected for the node. Equation (17) expresses the area us-
age of an single nodei, Ai. This is expressed byGflt when
floating-point is selected for implementation, whereWexp

andWman are the floating-point exponent and mantissa bit-
widths respectively. When fixed-point is selectedGfix is
used to calculate the area, whereWint andWfrac repre-
sent the fixed-point integer and fractional bit-widths respec-
tively.

The resulting values from the area estimator form one
of the inputs to the decision making phase of the analysis
which determines the most suitable data type to employ for
the implementation of the design. The other inputs to the
this decision phase include a performance data model for
the target technology along with user-specified design con-
straints. The performance model contains maximum possi-
ble performance data vectors for all the operator blocks in
the fixed-point and floating-point libraries and is specific to
the implementation target technology. These performance
vectors are obtained empirically and only provide a rough
guide for the decision making process. It is possible to in-
clude other performance metrics such as power consump-
tion in addition to speed.

The user-specified constraints can be used to further
guide or in some cases override the decision making pro-
cess in favor of one particular data format. For example the
user might request a large dynamic range to be used than
that found in the analysis phase, resulting in a preference
for one data format over the other.

In cases where the algorithm fails to find a design which
satisfies all the given user specifications, user intervention

is required to alter the design constraints. In this mode the
algorithm is iterated until a design which satisfies the user
requirements is found.

4 The BitSize tool

BitSize is implemented as a C++ object library, and cur-
rently supports two main front ends: (a) an operator over-
loaded C++ interface and (b) a Xilinx System Generator in-
terface. The advantages of method (a) include the ability
to analyse stock C/C++ code with few changes to it. The
advantages of method (b) include the ability to describe our
designs inside System Generator, where we can use its de-
sign verification and synthesis features.

A standard C++ compiler, such as Microsoft Visual
C Compiler (MSVC) or the GNU Compiler Collection
(GCC), is employed to compile transformed source code
along with the BitSize library. The precision analysis stage
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Figure 4. The Precision Analysis stages of the BitSize tool.

of BitSize takes place when executing the compiled code.
The execution consists of two passes: forward analysis and
backward analysis. The forward pass involves automatic
differentiation of the nodes in the data flow graph. The user-
supplied sample data set is used in this pass. Although tra-
ditional automatic differentiation tools [9] could have been
used for this pass, most of these tools are found to be either
too complicated or too slow for our purpose.

In the backward pass, the user-provided error specifica-
tion is used in conjunction with the sensitivity values cal-
culated in the forward pass to perform bit-width calcula-
tion as described in Section 5. In this pass we calculate the
maximum error tolerance possible at each operator node in
the data flow graph of the design. The annotated data flow



graph output of the precision analysis stage of BitSize is
then used as one of the inputs to area estimator, which to-
gether with the results of the range analysis and other user-
specified constraints, selects between the floating-point and
fixed-point implementations.

Once the analysis is completed, our tool provides several
back-ends which enable us to target different hardware im-
plementation systems. By converting the data flow graph
in to a Matlab script file, we can realise and evaluate both
fixed-point and floating-point designs via the Xilinx System
Generator design suite.

Alternatively it is possible to convert the designs into ei-
ther a VHDL, a Handel-C design description or an ASC
[15], [16] design description. Handel-C design descriptions
require the Celoxica DK2 system, while VHDL designs re-
quire the Synplicity VHDL synthesis tool and the ASC de-
sign descriptions require a standard C/C++ compiler such
as GCC to synthesise the designs. All the hardware designs
presented in Section 7 of this paper are targeted towards
Xilinx FPGAs, and hence we use Xilinx software for the
placement and routing stage of the synthesis process.

5 Case studies

We illustrate the application of our BitSize technique
by four case studies: ray-tracing, function approximation,
Finite-Impulse Response (FIR) filtering and a Discrete Co-
sine Transform (DCT).

Ray-Tracing

The first case study to illustrate our method is ray-
tracing. Ray-tracing is used in 3D graphics rendering. For
our case study we explore the bit-width minimisation of the
determinant of the equation in ray-tracing to find the inter-
section points between a ray and a sphere.

y
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R R
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Figure 5. The intersection between a ray with direction
vector d̂ from point~s, and a sphere with center at point~c
and radiusR.

From Figure 5 a pointp on the ray starting at~s and di-
rectiond̂ can be expressed as:~p = ~s + µd̂. At the points of

intersection between the ray and the sphere|~c−~s+µd̂| = R.
Solving for µ yields a quadratic, the determinantD of
which is:

D = b2 − (~v · ~v −R2) (18)

where~v = ~c− ~s andb = ~v · d̂.
We implement equation (18) in hardware using the Xil-

inx System Generator for design entry. Next we use this de-
sign description as input to our BitSize analysis tool, along
with a specification for the maximum output error. The bit-
width annotated data flow graph produced as output by Bit-
Size is then used to modify the original design specifica-
tion. The modified design is then synthesied with System
Generator. For the purposes of illustrating our method, we
implement the design in both fixed-point and floating-point
arithmetic.

Output Error (%) 0.0 0.1 0.2 0.5 0.75
Flip Flops 3885 3510 3388 3230 3090
LUTs 6726 5957 5734 5361 5053
Embedded Mults 7 7 7 7 7

Table 1. FPGA resource usage versus relative error for ray-
tracer, implemented in floating-point.

Output Error (%) 0.0 0.1 0.2 0.5 0.75
Flip Flops 2000 1709 1620 1407 1243
LUTs 1932 1630 1532 1328 1173
Embedded Mults 28 28 28 25 22

Table 2. FPGA resource usage versus relative error for ray-
tracer implemented in fixed-point with the use of embedded
multipliers.

Output Error (%) Ref 0.1 0.2 0.5 0.75
Flip Flops 4455 4674 4352 4225 3982
LUTs 5506 4559 4244 4108 3819

Table 3. FPGA resource usage versus relative error for ray-
tracer, implemented in fixed-point without the use of em-
bedded multipliers.

The FPGA resource utilisations for the floating-point and
fixed-point implementations of the ray-trace are presented
in Tables 1, 2, 3 and Figure 6. The dynamic range of these
designs is103. All the designs are targeted for the Xilinx
Virtex2 XC2V2000 chip. From these results we observe
that:

• The fixed-point implementations on average use 50%
fewer flip-flops and 75% fewer LUTs than floating-
point implementation for a similar output error spec-
ification. A reason for the lower LUT usage in the
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Figure 6. The variation of FPGA resource utilisation with
output relative error specification for the ray-tracing exam-
ple. The variation in Look Up Table (LUT) usage is shown
by (+) and the variation in Flip Flop usage by (o).

fixed-point implementations, is that they use 3 times
more embedded multipliers than in the floating-point
implementations.

• From the graphs in Figure 7, plotting variation of the
FPGA resource utilisation and the dynamic range, we
can see that the cross-over point for this particular de-
sign where floating-point design requires fewer flip-
flops then the fixed-point design, lies at a dynamic
range of106.

• A 0.1% output error specification gives us a 10% re-
duction in LUT usage and 9% reduction in flip flop
usage when we consider the fixed-point implementa-
tion. The rate of change in area decreases to 3% and
2.5% for LUTs and flip-flops when we increase the er-
ror specification from 0.2% to 0.5%.

• A similar trend is also noted for the floating-point im-
plementations where the greatest reduction in area oc-
curs when the error specification is 0.1%.

• After placement and routing, we find that the fixed-
point designs can operate at 100MHz while the
floating-point designs can operate at 80MHz. The
fixed-point designs use arithmetic IP cores provided by
Xilinx and are therefore optimised towards the target
FPGA, whereas the floating-point libraries we use are
FPGA target independent and are less efficient.

• Table 3 presents the result of implementing the ray-
tracer in fixed-point, but without the use of the embed-
ded multipliers on the FPGA. The fixed-point designs
use 20% more flip-flops and use 25% fewer LUTs
compared to floating-point designs.
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Figure 7. The variation of the FPGA resource utilisation
with increasing dynamic range for floating-point (o) and
fixed-point (+) implementations of the ray-tracer. All im-
plementations have a relative output error specification of
0.1%.

Function Approximation

The next case study involves the determination of the bit-
widths of the operations used in hardware function approx-
imation, expressed in equation (19):

f(x) = C2 · x2 + C1 · x + C0 (19)

where the values of the constantsC0, C1 andC2 are selected
according to the function being approximated. By changing
these values appropriately it is possible to approximate a
wide range of elementary functions [14]. For our example
we try the linear approximations of the functionsf(x) =√
−ln(x) andf(x) = xlog(x).
Figure 8 illustrates the variation in area for the two func-

tion approximations. The variation is shown for both the
fixed-point and floating-point implementations. For the ap-
proximation ofln(x), a 20% area reduction is possible in



0.05 0.1 0.15 0.2 0.25

1250

1300

1350

1400

1450

1500

1550

1600

1650

1700

Floating Point

Relative Error

Ar
ea

 ( X
ilin

x V
irte

x2
 S

lic
es

 )

0.05 0.1 0.15 0.2 0.25

250

300

350

400

Fixed Point

Relative Error

Ar
ea

 ( X
ilin

x V
irte

x2
 S

lic
es

 )

Figure 8. The variation in area with maximum output error for the approximation ofln(x) (+) andxlog(x) (o), for both
floating-point and fixed-point implementations on a Xilinx Virtex II device.

both the fixed-point and floating-point implementations for
a relative output error of5%. For thexlog(x) function
approximation, with a similar output error specification an
18% reduction is possible for the fixed-point implementa-
tion, while a 12% reduction is possible for the floating-point
implementation.

The maximum dynamic range for this example is1010.
Hence this design, which contains the same number of mul-
tipliers and adders, tends to favor a fixed-point implemen-
tation. If the dynamic range increases beyond1016, the
floating-point implementation would become more area ef-
ficient.

FIR Filtering
For this case study, we look at bit-width optimisation of

an FIR filter. The result of the area versus output error spec-
ification is shown in Figure 9.
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Figure 9. The variation in area with output error for the
floating-point (+) and fixed-point (-) implementation of the
FIR filter.

The dynamic range of the calculations in this example is
1016. The floating-point implementation on average uses
30% less area than the fixed-point implementation for a
given error specification. Our experimental results show
that when the dynamic range of the input remains below
1012, the fixed-point design would become more area effi-
cient.

Discrete Cosine Transform

The last case study we consider is a design for 8-point
discrete cosine transform. This transform is commonly used
in many image compression algorithms, including JPEG
and MPEG. The design is described using the Xilinx Sys-
tem Generator and analysed with our BitSize tool. We con-
sider the area-usage of the design for various output error
specifications.

Output Error (%) 0.0 0.1 0.2 0.5 0.75
Flip Flops 2130 1615 1539 1161 1127
LUTs 2136 1709 1612 1373 1322
Embedded Mults 60 54 54 46 46

Table 4. The variation of area usage with relative error for
DCT implementations in fixed-point. The dynamic range of
the designs is102.

Output Error(%) 0.0 0.1 0.2 0.5 0.75
Flip Flops 13012 11800 11400 10779 10724
LUTs 24207 21507 20649 19536 19482
Embedded Mults 16 16 16 16 16

Table 5. The variation of area usage with relative error for
DCT implementations in floating-point. The dynamic range
of the designs is102.

The results in Tables 4 and 5 show that for a simi-
lar output error specification, the fixed-point implementa-
tion requires fewer than 10% of the LUTs and flip-flops in
the floating-point implementation. On the other hand the
floating-point designs use 70% fewer embedded multipli-
ers than the fixed-point designs. Therefore based on the
user-specified constraints on area, if there is a tight con-
straint on the available embedded multipliers, the floating-
point implementations would be selected, while the fixed-
point designs will be selected if there is a tight constraint
on the LUTs or flip-flop usage. In addition, if the dynamic



range of the design is increased as illustrated in Figure 7,
the floating-point designs would seem more promising since
their rate of increase in resource usage with dynamic range
is smaller than fixed-point designs.

6 Conclusion

We have presented a method for automatic determination
of operator bit-widths for hardware design, which is useful
not only for reconfigurable computing but also for VLSI
design in general. We show that our framework, based on
automatic differentiation, provides a unified treatment for
bit-width optimisation of both fixed-point and floating-point
designs. Current and future work includes improving the in-
terface between the BitSize tool and other related tools such
as Xilinx System Generator and Handel-C, enhancing our
approach to support power consumption optimisation and
hardware/software co-design, and extending our method to
cover (a) other number representations and (b) designs with
multiple number representations.
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