
An Approach to Graph and Netlist
Compression

Jeehong Yang, Serap A. Savari
EECS Department

University of Michigan
Ann Arbor, MI 48109, USA

Email: {xosh,savari}@eecs.umich.edu

Oskar Mencer
Department of Computing
Imperial College London
London SW7 2BZ, UK

Email: o.mencer@imperial.ac.uk

Abstract

We introduce an EDIF netlist graph algorithm which is lossy with respect to the original
byte stream but lossless in terms of the circuit information it contains based on a graph mining
tool SUBDUE. Our algorithm, CEDIF (Compressed EDIF), compresses the EDIF file about
2 − 3% more than the state-of-the-art PAQ text compression algorithm. We also developed a
heuristic partitioning algorithm that tries to avoid hurting frequent subgraph patterns by the
partitioning process to speed up the graph mining process, and introduced a way to use graph
mining tools as a graph compressor so that the compressed graph could be decompressed.

I. INTRODUCTION

As VLSI (Very Large Scale Integration) technologies develop, it is possible to increase
the density of transistors in the same chip area. This potentially enables the design of
more complex circuits. As a circuit becomes more complex, there are more elements to
connect, and hence the size of the connection information, called a netlist, grows. Circuits
in today’s technology have netlist files sometimes being described with several hundreds
of megabytes, and we anticipate that in the near future the standard format for netlists
will result in files requiring several gigabytes each. Therefore, it is important to reduce
the size of a netlist.

There are two approaches to compressing a netlist. Since netlist files are usually
structured texts which have some similarities with XML (eXtended Markup Language),
it is possible to directly compress a netlist with a structured text compression algorithm
such as LZCS[1], or to first convert it into an XML file and then apply various XML
compression algorithms such as XMill[7], XML-PPM [2], and XComp[6]. These methods
offer some compression with relatively low computational complexity. However, since
these compression algorithms focus on compressing the structured text itself and ignore
the connection information it contains, it is natural to explore alternative approaches
based on compressing the labeled graph corresponding to the connection information.

Research in graph mining offers tools and techniques to discover important subgraph
structures from input graph(s). There are two types of graph mining problems. One of
them seeks the important subgraph structures from a set of graphs {G1, · · · , Gn}[13],
[11], [12]. For this case, most algorithms determine if a subgraph pattern is in Gi or
not, and hence, any subgraph could be counted at most n times. Such algorithms are not
adequate by themselves for compressing a single graph. The primary application of the
tools is in the study of molecular physics, and the input graph sets are usually parts of
some molecule. The other graph mining literature aims to uncover the important subgraph

O

O

CH CH

O

O

CH

CH

O

O

CHO

CHO

C H

H C

Different MCM solu�on results

in different grammar!

Fig. 1. An example circuit which can have different graph grammars by choosing different maximum cardinality
matching solution for GRAPHITOUR.

structures from a single input graph G = (N, E)[19], [10], [15]. For this case, a specific
subgraph pattern could occur more than one time and up to n times for the input graph.
Although the discovered subgraph structures could be used toward graph compression,
most of the literature in graph mining only focuses on improving the understanding of
graph structures.

Among the graph mining tools, SUBDUE[10] and GRAPHTOUR[15] discusses graph
compression. SUBDUE uses a heuristic algorithm to discover frequent subgraphs, and it
applies a form of MDL (Minimum Description Length) to decide in a greedy fashion
what is the most effective subgraph pattern at any step for compressing the graph.
However, the shortcomings of SUBDUE are that it does not offer a compression method
that is decompressible, it does not discover all the important subgraphs and it requires
massive computation[19]. GRAPHITOUR considers the most frequent edges at a time,
and contracts parts of them which satisfy the MCM (Maximum Cardinality Matching)
problem[14]. However, since it is only considering an edge type at a time, it lacks in
structural view, and hence, might miss some important subgraph structures for com-
pression. For example, in Fig.1, MCM solution for a subgraph induced by each edge
type (C-H, C-O) has two edges at most. So, we can choose any MCM solution for
GRAPHITOUR. Consider we chose a MCM solution from the C-H edge. Even though,
the top/bottom pair solution and the left/right pair solution results in different compressed
graph, GRAPHITOUR algorithm does not specify which one to choose, and hence, can
choose the worse one.

There also has been research on efficient ways to represent a graph [21], [23]. The
graph representation literature has focused on what is the efficient way to represent the
adjacency list (or the adjacency matrix) of the graph. They consider graph structures such
as graphs of bounded genus[17] and planar graphs[22] to obtain more tight representation
bounds, but does not consider repeated structures within the graphs.

In this paper, we describe an EDIF netlist compression algorithm based on a labeled
graph compression technique, and

 OR _1

OR_2

a

c

b

o

I1

I2

I1

I2

O

O

EXAMPLE

Fig. 2. The circuit EXAMPLE: o = (a OR b) OR c

• we develop a graph partitioning algorithm which is useful for preserving frequent
subgraph patterns of the graph,

• we modify the state-of-the-art graph mining tool so that it can compress the graph
and the graph can be recovered from the compressed file,

• we compare our results with other compression algorithms that can compress EDIF
netlist files.

In Section II, we briefly review the structure of EDIF netlist files. In Section III, we
discuss the EDIF netlist compression algorithm based on graph compression techniques.
We provide experimental results in Section IV, and conclude in Section V.

II. THE EDIF NETLIST

There are many ways to describe a circuit netlist and several netlist description formats.
In this paper, we only concentrate on EDIF (Electronic Data Interchange Format)[8]
because most other formats can only be read into a specific type of CAD (Computer
Aided Design) tool. EDIF was proposed back in the 1980s to transmit circuit information
to various CAD tools, and it is now widely supported by most vendors of CAD tools.
EDIF could be used to describe more than just circuit netlists, but we focus here only
on circuit netlists.

Before describing the format of EDIF files, we explain some terms that are standard
in discussing the structure of a circuit. (See Fig. 2 for an example circuit.)

• Cell : A cell is a basic block for describing a circuit. Each cell has ports from which
it receives or transmits an electric signal. To describe a circuit efficiently, we use a
set of cells called a standard cell library. A standard cell library contains a cell list,
the information on how the cells are implemented in the physical domain, and the
properties of each cell such as its function, size, delay, and power consumption. In
Fig. 2, the circuit consists of one cell, the OR gate which has two input ports I1,
I2, and one output port O.

• Instance: An instance is an embedding of a cell in the circuit and is used to
distinguish the cells that are used multiple times. In our example, we have two
instances OR_1 and OR_2 using the same cell, the OR gate.

• Net: a net describes how the ports are connected within the instances. In Fig. 2, we
have five nets: (EXAMPLE.a, OR_1.I1), (EXAMPLE.b, OR_1.I2), (OR_1.O,
OR_2.I1), (EXAMPLE.c, OR_2.I2), and (OR_2.O, EXAMPLE.o), where (A.a,
B.b) denotes there is a connection from port a of A to port b of B.

A. Format
An EDIF file is a text file having a grammar like the programming language LISP. The

basic EDIF syntax is called a construct. A construct begins with an opening parenthesis

(cell OR (cellType GENERIC)

(view Netlist_representation (viewType NETLIST)

(interface

(port I1 (direction INPUT))

(port I2 (direction INPUT))

(port O (direction OUTPUT))

)))

……

(instance OR_1

(viewRef Netlist_representation

(cellRef OR(libraryRef my_class))

))

……

(net a

(joined

(portRef a)

(portRef I1 (instanceRef OR_1))

))

……

Fig. 3. Part of EDIF netlist describing EXAMPLE circuit

‘(’ and a tag; this is followed by a list of items ending with a closing parenthesis ‘)’.
Those items may be elements consisting of data items, or they may be other constructs
which build a nested structure[8].

In an EDIF file, the construct describes the cells, instances, and nets of a circuit. Fig. 3
shows part of an EDIF file which describes the EXAMPLE circuit in Fig. 2. The first block
of Fig.3 defines the OR cell and its ports, the second block defines the OR_1 instance,
and the last block defines the net (EXAMPLE.a, OR_1.I1). Note that we used italics
to emphasis the tags of each construct in Fig.3.

B. Isomorphism
Our focus is on the compression of a netlist graph instead of on structured text

compression, and the file we obtain after a compression-decompression process generally
differs from the input EDIF file. We say the files are equivalent if the circuits they produce
are isomorphic. In other words, our compression algorithm is lossy with respect to the
original byte stream but lossless in terms of the circuit structure it contains.

The following parts of netlists can be ignored when we concentrate on circuit isomor-
phism.

1) Description order: It is acceptable to change the element order of cells (or their
ports), instances, and nets.

2) Redundant cells: It is acceptable to ignore cell definitions for the cells that are not
used in any of the instances because this is redundant information.

3) Instance names: Most of the CAD tools writing EDIF files generate a collection
of instance names without a specific importance, and the end-user does not need
the original instance names.

III. NETLIST COMPRESSION ALGORITHM

In this section, we describe the netlist compression algorithm. The overall process is
shown in Fig.4. We start the netlist compression by extracting the connection information
in a graphical structure from the netlist. We compress the graph structure by discovering

Netlist

Conversion

Graph

Representa!on

Graph

Compression

EDIF

Netlist

Binary

Stream

Standard

Cell

Library

Fig. 4. The netlist compression algorithm

4, “E”

5, “E”

6, “F”

7, “E”

8, “E”

9, “F”

0, “A”

1, “B”

2, “C”

3, “D”

0 : a

1 : b

2 : c

3 : o

4 : OR_1.I1

A : EXAMPLE.a

B : EXAMPLE.b

C : EXAMPLE.c

D : EXAMPLE.o

E : OR.I1/I2

F : OR.O

5 : OR_1.I2

6 : OR_1.O

7 : OR_2.I1

8 : OR_2.I2

9 : OR_2.O

Fig. 5. Netlist to Graph conversion of the EXAMPLE circuit.

frequent subgraphs. Finally, we represent the compressed graph structure in a binary
stream.

A. Netlist Conversion
The graph that we extract from a netlist file should contain all of the connection

information. Moreover, the graph should have structures that correspond to the structures
of the netlist; i.e., the graph should contain the cell, instance, and net information.

The nodes of the graph represent instance-ports, and the edges capture the net defini-
tion. We will use node labels to identify the cell-port for the corresponding instance-port.
Finally, the graph is directed because the net connections have directions.

Converting a netlist file to a graph is simple. Generate nodes for each instance-port
in the circuit, and label each one according to its cell-port attributes. For each instance,
connect each input port to its corresponding output port(s). Next, connect all of the nodes
that are in the nets with consideration of the port property so that input signals are mapped
to input ports and output signals correspond to output ports.

Fig.5 shows the graph corresponding to the netlist in Fig.2. In each node, the first
number refers to the node name and the second component provides the node label. The
table in Fig.5 shows what the node names and node labels actually mean from Fig.2

B. Graph Compression
The overall graph compression process is shown in Fig.6. We start by partitioning the

graph because discovering frequent patterns from a single large graph is computationally

Graph Compressor

Frequent Pa!ern Generator

Graph

Par""on

SUBDUE
(Single graph

mining tool)

SUBDUE
(Single graph

mining tool)

SUBDUE
(Single graph

mining tool)

G1

G2

Gn

P1

P

Pn

GASTON
(set of graphs

mining tool)

…

Pa!ern

Replacer
graph G

Compressed

graph G’

Fig. 6. The graph compression algorithm

expensive. After graph G is partitioned into {G1, · · · , Gn}, we run SUBDUE to find
the set of subgraphs Pi that can compress the partition Gi, where i = 1, · · · , n. Since
there are possible similarities within {P1, · · · , Pn}, we run another graph mining tool,
GASTON, to solve a graph mining problem for a set of graphs to find the distribution
of frequencies in the SUBDUE-discovered patterns. Next, we compress the graph G by
contracting subgraphs which match patterns in P . During this process, we make sure the
compressed graph G′ can regenerate the original graph G.

1) Graph Partition: The bottleneck in graph compression is in the graph mining step
because discovering important subgraph structures requires a search space exponential in
the size of the input graph size. For example, we use SUBDUE[10] as our main single
graph mining tool. When we run SUBDUE to discover important subgraph patterns among
the benchmark circuits, just a few files were processed within a reasonable amount of
time. For all of the other files, we stopped the graph mining process after several hours
with no result. Therefore, in order to achieve scalability, it is important to partition the
graph.

Since we need the original graph back from the partitioned graph, we say that
{G1, · · · , Gn} is a partition of graph G = (N, E) if it satisfies the following properties:

• Gi = (Ni, Ei) is a induced subgraph of G for i = 1, · · · , n.
• ∪n

i=1Ni = N .
• ∪n

i=1Ei = E where ∩n
i=1Ei = φ.

By, the second and third properties, we could always reconstruct the original graph G
from the partition just by using the union operation.

Since the partitioning process might affect the discovered frequent subgraph patterns,
we do not wish to partition the graph just by discovering the minimum cuts as is done
in [18]. We instead seek to the edges that minimize the effect on the frequent subgraph
patterns and gather them until they can serve as cuts.

The following algorithm partitions the graph G into P = {G1, · · · , Gn} such that
sizeof(Gi) ≤ β, where i = 1, · · · , n. First, we initialize the partition P by inserting
G; G1 = G. Then, we analyze P to obtain the maximum partition size m and the
corresponding part i. If m ≤ β, then we stop partitioning the graph. Otherwise, we
iterate the following procedures until m ≤ β. In each iteration, we first analyze the edge

a

b

c

b

a

c

x

x b

a

c

x :

x

x b

a

c

x :

[SUBDUE]

[MODIFIED-SUBDUE]

(b, a)

Fig. 7. Decompressible Graph Compression

label1 frequency. Then, we move the edges that occur less than α times each from Gi

to a partition Gk, where sizeof(Gk)+ sizeof(Nonfrequent_Edges)≤ β. Next,
we group the edges having the most frequent edge label meaning we are treating it as
a node. We change the label of each edge which is an incoming/outgoing edge of an
edge having the most frequent edge label in order to we consider the higher level edge
frequency at each iteration. Finally, we put this edge label into a list so that we can
ignore it when we analyze the edge label frequency again.

2) Frequent Pattern Generator: The frequent pattern generator has the following
procedure: For each partition, we run SUBDUE to discover all the frequent subgraphs
having at least two edges from the graph. During the process SUBDUE generates a
subgraph file where it stores the frequent subgraphs it finds. Since a subgraph file is
the subgraph frequency list, we gather subgraph files from each partition and generate a
graph list. By using a graph mining tool like GASTON[13] which solves the set of graphs
problem, we find the most frequent subgraph among the graph list.

3) Pattern Replacer: In Fig.7, we show the decompression problem that arises with
SUBDUE. When the graph in the left is input to SUBDUE, it finds a subgraph pattern
x from the graph. However, the ‘-compress’ option of SUBDUE produces a graph
which is just a connection of two x nodes.

This new graph cannot be decompressed because the subgraph x has three nodes a,
b, and c, and when we say there is a connection between two x nodes, it is not clear
which inner-nodes of the subgraph x take part in the connection. In order to decompress
the graph, we need to specify which inner-nodes of a subgraph are connected to exterior-
nodes of the subgraph. As we illustrate in Fig.7, we use edge labels for this purpose.

If the new graph produced by SUBDUE has an edge whose end node corresponds to
a subgraph, then we update the edge label so that it directs which inner-node of the
subgraph takes part in the connection. This procedure can be done by comparing the
new graph with the original graph and the subgraph description. We modify the SUBDUE

1The initial edge label is a function of its label of its end nodes.

process so that it uses new edge labels for the purpose of decompression, and call the
result the MODIFIED-SUBDUE process.

C. Graph Representation
There are various ways to represent a graph, but among them, we choose to represent

a graph using its adjacency matrix because it gave the most compact file size above all
when combined with a PAQ compression algorithm[16].

We generate an upper triangular adjacency matrix A as follows: For (i, j) ∈ E, let
l(i, j) be the edge label of edge (i, j), l(i, j) = φ if neither node i nor node j is a
subgraph, and Ai,j is the (i, j)th element of adjacency matrix A2.

• If i < j and
– l(i, j) = φ, then set Ai,j = 1.
– l(i, j) 6= φ, then set Ai,j = 3.

• If i > j and
– l(i, j) = φ, then set Aj,i = 2.
– l(i, j) 6= φ, then set Aj,i = 4.

In addition to the adjacency matrix, we need the list of node labels and edge labels to
represent the graph. We, write the nonzero upper-triangular part of the adjacency matrix
in its diagonal order. The, we write the node label in the node order, and the edge label
in the order of its occurrence on the adjacency matrix stream. After writing the graph
representation in a text file, we compress it with PAQ.

IV. EXPERIMENTAL RESULTS

We tested four algorithms to compress the netlist files. M-SUB is the MODIFIED-SUBDUE
process which is a modification of SUBDUE so that the compressed graph could be
decompressed. CEDIF is the algorithm we described in section III-B. XML-PPM converts
the EDIF netlist into an XML format and compress it using XML-PPM[2], and PAQ
compresses the EDIF netlist using paq8o8[16].

Table I shows the compression ratio and the runtime of each algorithm. The compres-
sion ratio is defined as

EDIF file size-Compressed file size

EDIF file size.

The first two columns show the number of nodes and edges in the converted netlist
graph. As we can see text compressors, XML-PPM and PAQ, runs much faster compared
to graph compressors, M-SUB and CEDIF. But, since they are lossless with respect to
the original byte stream, they have worse compression ratio than the graph compressors.
Comparing the result of M-SUB and CEDIF, we see that CEDIF runs much faster3 than
M-SUB while they have the similar compression ratio. Moreover, we can see that the
compressed result between the first three circuits are similar, meaning that we did not
hurt the frequent subgraph patterns by partitioning the graphs.

Finally, the last three columns of Table I shows the stepwise result of CEDIF. Step 1
shows the result after the netlist conversion step in III-A, step 2 shows the result after the

2Note that there cannot be a self loop because the netlist conversion does not allow self loop, and the subgraph
pattern SUBDUE discovers are induced subgraph of the input graph, and hence, A has 0-diagonals.

3M-SUB even failed to give results within a reasonable amount of time which CEDIF did. N/A in Table I means it
did not give result within an hour.

Name |N | |E| M-SUB CEDIF XML-PPM PAQ step 1 step 2 step 3
s27 47 55 98.26 (0.89) 91.99 (1) 94.77 (1.89)
s208 330 411 98.79 (423.78) 94.73 (1) 97.05 (6.14)
s298 430 578 98.68 (417.69) 94.89 (2) 97.31 (7.58)
s344 511 639 N/A 95.35 (4) 97.73 (10.28)
s349 516 647 N/A 95.37 (6) 97.81 (9.30)
s382 559 744 N/A 95.20 (10) 97.38 (9.92)
s386 546 737 N/A 95.02 (10) 97.42 (8.67)
s400 577 772 N/A 95.23 (10) 97.52 (10.11)
s420 686 863 N/A 95.36 (8) 97.73 (13.28)
s444 628 836 N/A 95.22 (10) 97.61 (9.89)
s499 604 832 N/A 95.11 (10) 97.66 (9.05)
s510 687 891 N/A 95.07 (10) 97.29 (11.23)
s526 733 1022 N/A 95.25 (10) 97.63 (10.53)
s635 895 1145 N/A 95.58 (10) 98.16 (14.44)
s641 1055 1216 N/A 95.47 (10) 97.97 (16.69)
s713 1120 1319 N/A 95.47 (20) 97.97 (17.41)
s820 1105 1563 N/A 95.36 (10) 97.57 (14.41)
s832 1115 1587 N/A 95.39 (20) 97.77 (14.31)
s838 1398 1767 N/A 95.68 (20) 98.24 (21.39)
s938 1398 1767 N/A 95.64 (20) 97.94 (20.67)
s953 1295 1683 N/A 95.51 (20) 97.71 (18.83)
s967 1314 1723 N/A 95.44 (20) 97.63 (19.41)
s991 1497 1767 N/A 95.74 (30) 98.34 (23.25)
s1196 1640 2140 N/A 95.66 (30) 97.73 (22.98)
s1238 1651 2204 N/A 95.67 (30) 97.94 (23.28)
s1269 1794 2326 N/A 95.82 (30) 98.20 (26.56)
s1423 2141 2777 N/A 95.92 (50) 98.42 (30.33)
s1488 2093 2829 N/A 95.59 (40) 97.84 (30.13)
s1494 2093 2841 N/A 95.66 (30) 98.18 (31.16)
s1512 2324 2891 N/A 95.79 (40) 98.14 (36.83)
s3271 4775 6104 N/A 95.85 (90) 98.24 (73.17)
s3330 5248 6497 N/A 95.63 (110) 97.95 (81.13)
s3384 5243 6634 N/A 95.91 (110) 98.55 (76.80)
s4863 6917 8824 N/A 95.90 (140) 98.41 (95.91)
s5378 7793 9547 N/A 96.05 (170) 98.35 (123.25)
s6669 9519 12175 N/A 95.84 (190) 98.60 (146.41)
s9234 14523 17332 N/A 96.09 (320) 98.78 (218.80)
s13207 21946 26465 N/A 96.11 (460) 98.83 (327.28)
s15850 25908 30959 N/A 96.14 (570) 98.82 (389.17)
s35932 51603 67226 N/A 96.58 (1060) 99.41 (729.47)
s38417 60887 73978 N/A 96.16 (1360) 98.92 (911.61)
s38584 58109 74502 N/A 96.01 (1230) 98.65 (825.50)

TABLE I
COMPRESSION RATIO (%) (RUNTIME (SEC))

graph compression step in III-B, and the step 3 shows the result after graph representation
step in III-C.

V. CONCLUSIONS AND FUTURE RESEARCH

We introduced an EDIF netlist compression algorithm based on a graph mining tech-
nique which is lossy with respect to the original byte stream but lossless in terms of the
circuit structure it contains. We developed a graph partitioning algorithm which attempts
to minimize the effect on the frequent subgraph patterns from the original graph in order
to achieve scalability on graph mining procedure. We also introduced a way to modify

the graph mining tools so that they can be used for lossless graph compression.
Our compression result is based on a graph mining tool SUBDUE which uses heuristic

algorithms to find the frequent subgraph patterns from a single graph. However, since this
tool fails to fine all the frequent subgraph patterns in a reasonable amount of time, there
is a possibility of improving both the compression ratio and runtime by improving this
graph mining procedure. We also see the potential for better representations of compressed
graphs, and we leave this as future research.

REFERENCES

[1] J. Adiego, G. Navarro, and P. de la Fuente, “Lempel-Ziv compression of structured text”, In Proceedings of the
2004 IEEE Data Compression Conference (DCC 2004), pp.112-121, 2004.

[2] J. Cheney, “Compressing XML with multiplexed hierarchical PPM models”, In Proceedings of the 2001 IEEE
Data Compression Conference (DCC01), pp.163-172, 2001.

[3] T.M. Cover and J.A. Thomas, Elements of Information Theory, Second Edition, Wiley-Interscience, Hoboken,
New Jersey, 2006.

[4] P. Grunwald, M.A. Pitt and I.J. Myung, Advances in Minimum Description Length: Theory and Applications,
MIT Press, Cambridge, Massachusettes, 2005.

[5] ISCAS’89 Benchmark Suite (in EDIF file format), downloadable from http://www.fm.vslib.cz/∼kes/asic/iscas.
[6] W. Li, “XComp: An XML compression tool”, Master’s thesis, University of Waterloo, 2003.
[7] H. Liefke and D. Suciu, “XMill: an efficient compressor for XML data”, In Proceedings of the 2000 ACM

SIGMOD International Conference on Management of Data, pp.153-164, 2000.
[8] P. Stanford and P. Mancuso, EDIF: Electronic Design Interchange Format Version 2 0 0, Electronic Industries

Association, ANSI/EIA-548-1988, 1988.
[9] W. Sun, A. Mukherjee, N. Zhang, “A dictionary-based multi-corpora text compression system”, In Proceedings

of the 2003 IEEE Data Compression Conference (DCC03), p.448, 2003.
[10] D. J. Cook and L. B. Holder, “Substructure Discovery Using Minimum Description Length and Background

Knowledge”, In Journal of Artificial Intelligence Research, Vol. 1, p.231-255, 1994.
[11] X. Yan and J. Han, “gSpan: Graph-Based Substructure Pattern Mining”, Proceedings of the 2002 IEEE

International Conference on Data Mining (ICDM02), p.721
[12] J. Huan, W. Wang, and J. Prins, “Efficient Mining of Frequent Subgraphs in the Presence of Isomorphism”,

Third IEEE International Conference on Data Mining (ICDM03), p.549, 2003.
[13] S. Nijssen and J.N. Kok, “A Quickstart in Frequent Structure Mining can make a Difference”, Proceedings of

the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, p.647-652, 2004.
[14] H. Gabow, “Implementation of Algorithms for Maximum Matching on Nonbipartite Graphs”, Ph.D. thesis,

Stanford University, 1973.
[15] L. Peshkin, “Structure induction by lossless graph compression”, Proceedings of the 2007 Data Compression

Conference (DCC07), p.53-62, 2007.
[16] Matt Mahoney, “Adaptive Weighing of Context Models for Lossless Data Compression”, Florida Tech. Technical

Report CS-2005-16, 2005.
[17] N. Deo, B. Litow, “A structural approach to graph compression”, in the Proceedings of MFCS Workshop on

Communication, pp. 91-101, 1998.
[18] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular graphs”, SIAM

Journal on Scientific Computing, Vol. 20(1), p.359-392, 1998.
[19] M. Kuramochi and G. Karypis, “Finding Frequent Patterns in a Large Sparse Graph”, Data Mining and Knowledge

Discovery, Vol 11(3), pp. 243-271, 2005.
[20] D.J. Cook and L.B. Holder, Mining Graph Data, Wiley-Interscience, Hoboken, New Jersey, 2006.
[21] A. Itai and M. Rodeh, “Representation of Graphs”, Acta Informatica, Vol 17, pp.215-219, 1982.
[22] X. He, M-Y. Kao, and H-I. Lu, “Linear-Time Succinct Encodings of Planar Graphs via Canonical Orderings”,

SIAM Journal on Discrete Mathematics, Vol. 12(3), pp.317-325, 1999.
[23] M. Talamo and P. Vocca, “Representing graphs implicitly using almost optimal space”, Discrete Applied

Mathematics”, Vol. 108(1), pp. 193-210, 2001.

